More Math Into LETEX

4th Edition

George Grätzer

More Math Into LETEX

4th Edition

Foreword by

Rainer Schöpf
LETEX3 team

Springer

George Grätzer
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2
Canada
gratzer@mas.umanitoba.ca

Cover design by Mary Burgess.
Typeset by the author in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

Library of Congress Control Number: 2007923503
ISBN-13: 978-0-387-32289-6 e-ISBN-13: 978-0-387-68852-7
Printed on acid-free paper.
© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

To the Volunteers without whose dedication over 15 years, this book could not have been done
and to my four grandchildren
Danny (11),
Anna (8),
Emma (2),
and Kate (0)

Short Contents

Foreword xxi
Preface to the Fourth Edition xxv
Introduction xxix
I Short Course 1
1 Your LATEX 3
2 Typing text 7
3 Typing math 17
4 Your first article and presentation 35
II Text and Math 59
5 Typing text 61
6 Text environments 117
7 Typing math 151
8 More math 187
9 Multiline math displays 207
III Document Structure 245
$10 \mathrm{LAT}_{\mathbf{E}} \mathrm{X}$ documents 247
11 The AMS article document class 271
12 Legacy document classes 303
IV Presentations and PDF Documents 315
13 PDF documents 317
14 Presentations 325
V Customization 361
15 Customizing $\operatorname{LAT}_{\mathbf{E}} \mathbf{X}$ 363
VI Long Documents 419
16 BibTE $_{E} \mathbf{X}$ 421
17 MakeIndex 449
18 Books in LATEX 465
A Installation 489
B Math symbol tables 501
C Text symbol tables 515
D Some background 521
E LATEX and the Internet 537
F PostScript fonts 543
G LATEX localized 547
H Final thoughts 551
Bibliography 557
Index 561

Contents

Foreword xxi
Preface to the Fourth Edition xxv
Acknowledgments xxvii
Introduction xxix
Is this book for you? xxix
I Short Course 1
1 Your LATEX 3
1.1 Your computer 3
1.2 Sample files 4
1.3 Editing cycle 4
1.4 Three productivity tools 5
2 Typing text 7
2.1 The keyboard 8
2.2 Your first note 9
2.3 Lines too wide 12
2.4 More text features 13
3 Typing math 17
3.1 A note with math 17
3.2 Errors in math 19
3.3 Building blocks of a formula 22
3.4 Displayed formulas 27
3.4.1 Equations 27
3.4.2 Aligned formulas 30
3.4.3 Cases 33
4 Your first article and presentation 35
4.1 The anatomy of an article 35
4.1.1 The typeset sample article 41
4.2 An article template 44
4.2.1 Editing the top matter 44
4.2.2 Sectioning 46
4.2.3 Invoking proclamations 46
4.2.4 Inserting references 47
4.3 On using ETEX 48
4.3.1 ETEX error messages 48
4.3.2 Logical and visual design 52
4.4 Converting an article to a presentation 53
4.4.1 Preliminary changes 53
4.4.2 Making the pages 55
4.4.3 Fine tuning 55
II Text and Math 59
5 Typing text 61
5.1 The keyboard 62
5.1.1 Basic keys 62
5.1.2 Special keys 63
5.1.3 Prohibited keys 63
5.2 Words, sentences, and paragraphs 64
5.2.1 Spacing rules 64
5.2.2 Periods 66
5.3 Commanding IATEX 67
5.3.1 Commands and environments 68
5.3.2 Scope 71
5.3.3 Types of commands 73
5.4 Symbols not on the keyboard 74
5.4.1 Quotation marks 75
5.4.2 Dashes 75
5.4.3 Ties or nonbreakable spaces 76
5.4.4 Special characters 76
5.4.5 Ellipses 78
5.4.6 Ligatures 79
5.4.7 Accents and symbols in text 79
5.4.8 Logos and dates 80
5.4.9 Hyphenation 82
5.5 Comments and footnotes 85
5.5.1 Comments 85
5.5.2 Footnotes 87
5.6 Changing font characteristics 88
5.6.1 Basic font characteristics 88
5.6.2 Document font families 89
5.6.3 Shape commands 90
5.6.4 Italic corrections 91
5.6.5 Series 93
5.6.6 Size changes 93
5.6.7 Orthogonality 94
5.6.8 Obsolete two-letter commands 94
5.6.9 Low-level commands 95
5.7 Lines, paragraphs, and pages 95
5.7.1 Lines 96
5.7.2 Paragraphs 99
5.7.3 Pages 100
5.7.4 Multicolumn printing 101
5.8 Spaces 102
5.8.1 Horizontal spaces 102
5.8.2 Vertical spaces 104
5.8.3 Relative spaces 105
5.8.4 Expanding spaces 106
5.9 Boxes 107
5.9.1 Line boxes 107
5.9.2 Frame boxes 109
5.9.3 Paragraph boxes 110
5.9.4 Marginal comments 112
5.9.5 Solid boxes 113
5.9.6 Fine tuning boxes 115
6 Text environments 117
6.1 Some general rules for displayed text environments 118
6.2 List environments 118
6.2.1 Numbered lists 119
6.2.2 Bulleted lists 119
6.2.3 Captioned lists 120
6.2.4 A rule and combinations 120
6.3 Style and size environments 123
6.4 Proclamations (theorem-like structures) 124
6.4.1 The full syntax 128
6.4.2 Proclamations with style 129
6.5 Proof environments 131
6.6 Tabular environments 133
6.6.1 Table styles 140
6.7 Tabbing environments 141
6.8 Miscellaneous displayed text environments 143
7 Typing math 151
7.1 Math environments 152
7.2 Spacing rules 154
7.3 Equations 156
7.4 Basic constructs 157
7.4.1 Arithmetic operations 157
7.4.2 Binomial coefficients 159
7.4.3 Ellipses 160
7.4.4 Integrals 161
7.4.5 Roots 161
7.4.6 Text in math 162
7.4.7 Building a formula step-by-step 164
7.5 Delimiters 166
7.5.1 Stretching delimiters 167
7.5.2 Delimiters that do not stretch 168
7.5.3 Limitations of stretching 169
7.5.4 Delimiters as binary relations 170
7.6 Operators 170
7.6.1 Operator tables 171
7.6.2 Defining operators 173
7.6.3 Congruences 173
7.6.4 Large operators 174
7.6.5 Multiline subscripts and superscripts 176
7.7 Math accents 176
7.8 Stretchable horizontal lines 178
7.8.1 Horizontal braces 178
7.8.2 Overlines and underlines 179
7.8.3 Stretchable arrow math symbols 179
7.9 Formula Gallery 180
8 More math 187
8.1 Spacing of symbols 187
8.1.1 Classification 188
8.1.2 Three exceptions 188
8.1.3 Spacing commands 190
8.1.4 Examples 190
8.1.5 The phantom command 191
8.2 Building new symbols 192
8.2.1 Stacking symbols 192
8.2.2 Negating and side-setting symbols 194
8.2.3 Changing the type of a symbol 195
8.3 Math alphabets and symbols 195
8.3.1 Math alphabets 196
8.3.2 Math symbol alphabets 197
8.3.3 Bold math symbols 197
8.3.4 Size changes 199
8.3.5 Continued fractions 200
8.4 Vertical spacing 200
8.5 Tagging and grouping 201
8.6 Miscellaneous 204
8.6.1 Generalized fractions 204
8.6.2 Boxed formulas 205
9 Multiline math displays 207
9.1 Visual Guide 207
9.1.1 Columns 209
9.1.2 Subsidiary math environments 209
9.1.3 Adjusted columns 210
9.1.4 Aligned columns 210
9.1.5 Touring the Visual Guide 210
9.2 Gathering formulas 211
9.3 Splitting long formulas 212
9.4 Some general rules 215
9.4.1 General rules 215
9.4.2 Subformula rules 215
9.4.3 Breaking and aligning formulas 217
9.4.4 Numbering groups of formulas 218
9.5 Aligned columns 219
9.5.1 An align variant 221
9.5.2 eqnarray, the ancestor of align 222
9.5.3 The subformula rule revisited 223
9.5.4 The alignat environment 224
9.5.5 Inserting text 226
9.6 Aligned subsidiary math environments 227
9.6.1 Subsidiary variants 227
9.6.2 Split 230
9.7 Adjusted columns 231
9.7.1 Matrices 232
9.7.2 Arrays 236
9.7.3 Cases 239
9.8 Commutative diagrams 240
9.9 Adjusting the display 242
III Document Structure 245
$10 \mathrm{IAT}_{\mathbf{E}} \mathrm{X}$ documents 247
10.1 The structure of a document 248
10.2 The preamble 249
10.3 Top matter 251
10.3.1 Abstract 251
10.4 Main matter 251
10.4.1 Sectioning 252
10.4.2 Cross-referencing 255
10.4.3 Floating tables and illustrations 258
10.5 Back matter 261
10.5.1 Bibliographies in articles 261
10.5.2 Simple indexes 267
10.6 Visual design 268
11 The AMS article document class 271
11.1 Why amsart? 271
11.1.1 Submitting an article to the AMS 271
11.1.2 Submitting an article to Algebra Universalis 272
11.1.3 Submitting to other journals 272
11.1.4 Submitting to conference proceedings 273
11.2 The top matter 273
11.2.1 Article information 273
11.2.2 Author information 275
11.2.3 AMS information 279
11.2.4 Multiple authors 281
11.2.5 Examples 282
11.2.6 Abstract 285
11.3 The sample article 285
11.4 Article templates 294
11.5 Options 297
11.6 The AMS packages 300
12 Legacy document classes 303
12.1 Articles and reports 303
12.1.1 Top matter 304
12.1.2 Options 306
12.2 Letters 308
12.3 The $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ distribution 310
12.3.1 Tools 312
IV Presentations and PDF Documents 315
13 PDF documents 317
13.1 PostScript and PDF 317
13.1.1 PostScript 317
13.1.2 PDF 318
13.1.3 Hyperlinks 319
13.2 Hyperlinks for LTTEX $_{\mathrm{E}} \mathrm{X}$ 319
13.2.1 Using hyperref 320
13.2.2 backref and colorlinks 320
13.2.3 Bookmarks 321
13.2.4 Additional commands 322
14 Presentations 325
14.1 Quick and dirty beamer 326
14.1.1 First changes 326
14.1.2 Changes in the body 327
14.1.3 Making things prettier 328
14.1.4 Adjusting the navigation 328
14.2 Baby beamers 333
14.2.1 Overlays 333
14.2.2 Understanding overlays 335
14.2.3 More on the \only and \onslide commands 337
14.2.4 Lists as overlays 339
14.2.5 Out of sequence overlays 341
14.2.6 Blocks and overlays 343
14.2.7 Links 343
14.2.8 Columns 347
14.2.9 Coloring 348
14.3 The structure of a presentation 350
14.3.1 Longer presentations 354
14.3.2 Navigation symbols 354
14.4 Notes 355
14.5 Themes 356
14.6 Planning your presentation 358
14.7 What did I leave out? 358
V Customization 361
15 Customizing $\mathrm{LAT}_{\mathbf{E}} \mathbf{X}$ 363
15.1 User-defined commands 364
15.1.1 Examples and rules 364
15.1.2 Arguments 370
15.1.3 Short arguments 373
15.1.4 Optional arguments 374
15.1.5 Redefining commands 374
15.1.6 Redefining names 375
15.1.7 Showing the definitions of commands 376
15.1.8 Delimited commands 378
15.2 User-defined environments 380
15.2.1 Modifying existing environments 380
15.2.2 Arguments 383
15.2.3 Optional arguments with default values 384
15.2.4 Short contents 385
15.2.5 Brand-new environments 385
15.3 A custom command file 386
15.4 The sample article with user-defined commands 392
15.5 Numbering and measuring 398
15.5.1 Counters 399
15.5.2 Length commands 403
15.6 Custom lists 406
15.6.1 Length commands for the list environment 407
15.6.2 The list environment 409
15.6.3 Two complete examples 411
15.6.4 The trivlist environment 414
15.7 The dangers of customization 415
VI Long Documents 419
16 BibTE $_{E} \mathbf{X}$ 421
16.1 The database 423
16.1.1 Entry types 423
16.1.2 Typing fields 426
16.1.3 Articles 428
16.1.4 Books 429
16.1.5 Conference proceedings and collections 430
16.1.6 Theses 433
16.1.7 Technical reports 434
16.1.8 Manuscripts and other entry types 435
16.1.9 Abbreviations 436
16.2 Using BibTEX 437
16.2.1 Sample files 437
16.2.2 Setup 439
16.2.3 Four steps of BibTEXing 440
16.2.4 BibTEX rules and messages 443
16.2.5 Submitting an article 446
16.3 Concluding comments 446
17 MakeIndex 449
17.1 Preparing the document 449
17.2 Index commands 453
17.3 Processing the index entries 459
17.4 Rules 462
17.5 Multiple indexes 463
17.6 Glossary 464
17.7 Concluding comments 464
18 Books in IATEX 465
18.1 Book document classes 466
18.1.1 Sectioning 466
18.1.2 Division of the body 467
18.1.3 Document class options 468
18.1.4 Title pages 469
18.1.5 Springer's document class for monographs 469
18.2 Tables of contents, lists of tables and figures 473
18.2.1 Tables of contents 473
18.2.2 Lists of tables and figures 475
18.2.3 Exercises 476
18.3 Organizing the files for a book 476
18.3.1 The folders and the master document 477
18.3.2 Inclusion and selective inclusion 478
18.3.3 Organizing your files 479
18.4 Logical design 479
18.5 Final preparations for the publisher 482
18.6 If you create the PDF file for your book 484
A Installation 489
A. 1 ETEX on a PC 490
A.1.1 Installing MiKTeX 490
A.1.2 Installing WinEdt 490
A.1.3 The editing cycle 491
A.1.4 Making a mistake 491
A.1.5 Three productivity tools 494
A.1.6 An important folder 494
A. 2 ITEX on a Mac 495
A.2.1 Installations 495
A.2.2 Working with TeXShop 496
A.2.3 The editing cycle 498
A.2.4 Making a mistake 498
A.2.5 Three productivity tools 498
A.2.6 An important folder 499
B Math symbol tables 501
B. 1 Hebrew and Greek letters 501
B. 2 Binary relations 503
B. 3 Binary operations 506
B. 4 Arrows 507
B. 5 Miscellaneous symbols 508
B. 6 Delimiters 509
B. 7 Operators 510
B.7.1 Large operators 511
B. 8 Math accents and fonts 512
B. 9 Math spacing commands 513
C Text symbol tables 515
C. 1 Some European characters 515
C. 2 Text accents 516
C. 3 Text font commands 516
C.3.1 Text font family commands 516
C.3.2 Text font size changes 517
C. 4 Additional text symbols 518
C. 5 Additional text symbols with T1 encoding 519
C. 6 Text spacing commands 520
D Some background 521
D. 1 A short history 521
D.1.1 $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 521
D.1.2 $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} 2.09$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-}-\mathrm{TE}_{\mathrm{E}} \mathrm{X}$ 522
D.1.3 IATEX^{2} 523
D.1.4 More recent developments 524
D. 2 Structure 525
D.2.1 Using LATEX 525
D.2.2 AMS packages revisited 528
D. 3 How ${ }^{4} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ works 528
D.3.1 The layers 528
D.3.2 Typesetting 529
D.3.3 Viewing and printing 530
D.3.4 ETEX's files 531
D. 4 Interactive $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ 534
D. 5 Separating form and content 535
E LATEX and the Internet 537
E. 1 Obtaining files from the Internet 537
E. 2 The TEX Users Group 541
E. 3 Some useful sources of IATEX information 542
F PostScript fonts 543
F. 1 The Times font and MathTime 544
F. 2 Lucida Bright fonts 546
F. 3 More PostScript fonts 546
G LATEX localized 547
H Final thoughts 551
H. 1 What was left out? 551
H.1.1 ETEX omissions 551
H.1.2 TEX omissions 552
H. 2 Further reading 553
H. 3 What's coming 554
Bibliography 557
Index 561

Foreword

It was the autumn of 1989-a few weeks before the Berlin wall came down, President George H. W. Bush was president, and the American Mathematical Society decided to outsource $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ programming to Frank Mittelbach and me.

Why did the AMS outsource $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ programming to us? This was, after all, a decade before the words "outsourcing" and "off-shore" entered the lexicon. There were many American $\mathrm{T}_{\mathrm{E}} X$ experts. Why turn elsewhere?

For a number of years, the AMS tried to port the mathematical typesetting features of $\mathcal{A} \mathcal{M S}$ - $\mathrm{T}_{\mathrm{E}} X$ to $\mathrm{IAT}_{\mathrm{E} X}$, but they made little progress with the AMSFonts. Frank and I had just published the New Font Selection Scheme for IATEX, which went a long way to satisfy what they wanted to accomplish. So it was logical that the AMS turned to us to add AMSFonts to $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$. Being young and enthusiastic, we convinced the AMS that the $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands should be changed to conform to the $\mathrm{I}_{\mathrm{E}} \mathrm{X}$ standards. Michael Downes was assigned as our AMS contact; his insight was a tremendous help.

We already had ETE ${ }_{E} X$-NFSS, which could be run in two modes: compatible with the old $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ or enabled with the new font features. We added the reworked $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-}$ $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code to $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}-\mathrm{NFSS}$, thus giving birth to $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{AT} \mathrm{T}_{\mathrm{E}} \mathrm{X}$, released by the AMS at the August 1990 meeting of the International Mathematical Union in Kyoto.
$\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{ET} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ was another variant of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. Many installations had several $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ variants to satisfy the needs of their users: with old and new font changing commands, with and without $\mathcal{A} \mathcal{M} \mathcal{S}$-ETTEX, a single and a multi-language version. We decided to develop a Standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ that would reconcile all the variants. Out of a group of interested people grew what was later called the $L^{A} T_{E} X 3$ team-and the ${ }^{E} T_{E} X 3$ project got underway. The team's first major accomplishment was the release of $\mathrm{ET}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$ in June 1994. This standard LTEX incorporates all the improvements we wanted back in 1989. It is now very stable and it is uniformly used.

Under the direction of Michael Downes, our $\mathcal{A} \mathcal{M} \mathcal{S}$-ETEX code was turned into AMS packages that run under $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ just like other packages. Of course, the $\mathrm{ET}_{\mathrm{E}} \mathrm{X} 3$
team recognizes that these are special; we call them "required packages" because they are part and parcel of a mathematician's standard toolbox.

Since then a lot has been achieved to make an author's task easier. A tremendous number of additional packages are available today. The $L^{4} T_{E} X$ Companion, 2 nd edition, describes many of my favorite packages.

George Grätzer got involved with these developments in 1990, when he got his copy of $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX in Kyoto. The documentation he received explained that $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ ${ }^{\mathrm{LA}} \mathrm{T} \mathrm{X}$ is a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ variant-read Lamport's $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ book to get the proper background. $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX is not $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ either-read Spivak's $\mathcal{A} \mathcal{M} \mathcal{S}$ - $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ book to get the proper background. The rest of the document explained in what way $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX differs from LATEX and $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Talk about a steep learning curve ...

Luckily, George's frustration working through this nightmare was eased by a lengthy e-mail correspondence with Frank and lots of telephone calls to Michael. Three years of labor turned into his first book on $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, providing a "simple introduction to $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{\text {- }}$ ATEX".

This fourth edition is more mature, but preserves what made his first book such a success. Just as in the first book, Part I is a short introduction for the beginner, dramatically reducing the steep learning curve of a few weeks to a few hours. The rest of the book is a detailed presentation of what you may need to know. George "teaches by example". You find in this book many illustrations of even the simplest concepts. For articles, he presents the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ source file and the typeset result side-byside. For formulas, he discusses the building blocks with examples, presents a Formula Gallery, and a Visual Guide to multiline formulas.

Going forth and creating "masterpieces of the typesetting art"-as Donald Knuth
 the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ beginner as well as for the advanced user. You just start at a different point.

The topics covered include everything you need for mathematical publishing.

- Starting from scratch, by installing and running $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ on your own computer
- Instructions on creating articles, from the simple to the complex
- Converting an article to a presentation
- Customize IATEX to your own needs
- The secrets of writing a book
- Where to turn to get more information or to download updates

The many examples are complemented by a number of easily recognizable features:

Rules which you must follow
Tips on how to achieve some specific results
Experiments to show what happens when you make mistakes-sometimes, it can be difficult to understand what went wrong when all you see is an obscure $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ error message

This book teaches you how to convert your mathematical masterpieces into typographical ones, giving you a lot of useful advice on the way. How to avoid the traps for the unwary and how to make your editor happy. And hopefully, you'll experience the fascination of doing it right. Using good typography to better express your ideas.

If you want to learn $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, buy this book and start with the Short Course. If you can have only one book on $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ next to your computer, this is the one to have. And if you want to learn about the world of L TE E packages, also buy a second book, the $L A T_{E} X$ Companion, and edition.

Rainer Schöpf
LATEX 3 team

Preface to the Fourth Edition

This is my fourth full-sized book on $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$.
The first book, Math into $T_{E} X$: A Simple Introduction to $\mathcal{A} \mathcal{M} \mathcal{S}$-LATE ${ }^{X} X$ [19], written in 1991 and 1992, introduced the brand new $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX, a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ variant not compatible with the ${ }^{E} T_{E} X$ of the time, $\mathrm{IT}_{E} \mathrm{X}$ 2.09. It brought together the features of $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ and the math typesetting abilities of $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, the AMS typesetting language.

The second book, Math into $L^{A T} E_{E} X$: An Introduction to $L^{A T} E^{X}$ and $\mathcal{A} \mathcal{M}-L^{A T} T_{E} X$ [27], written in 1995, describes the new $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ introduced by the $\mathrm{LT}_{\mathrm{E}} \mathrm{X} 3$ team and the AMS typesetting features implemented as extensions of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, called packages.

The third book, Math into $L^{A} T_{E} X$, 3rd edition [30], published in 2000, reports on the same system. By 2000, both the "new" ${ }^{\mathrm{LT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ and the AMS packages were quite mature. The feverish debugging of the new $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ every six months bore fruit. ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ became very stable. It has changed little since 2000. Version 2.0 of the AMS packages was released and it also became very stable. The third book reports on a rock solid typesetting system.

What also changed between 1995 and 2000 is the widespread use of the Internet. Several chapters of the third book deal with the impact of the Internet on mathematical publications.

Now, seven years later, we can still report that ETEX—no longer new-and the AMS packages have changed very little. However, the impact of the Internet became even more important. Computers also changed. They are now much more powerful. When I started typesetting math with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, it took two and a half minutes to typeset a page. This book takes 1.8 seconds to typeset on my computer, a Mac desktop from 2006. As a result, we do not have to be very selective in what we load into memory; we can load everything we may possibly need.

Circumincession

So this is the first big change compared to the previous books. In this book, we roll $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, and the AMS packages into one, and we call it simply $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. This results in a great simplification in the exposition and makes the learning curve a little less steep.

I am sure with some advanced users this will prove to be a controversial decision. They want to know where a command is defined. For the beginner and the non-expert user this does not make any difference. What matters is that the command they need be available when they need it.

From the beginner's point of view, this approach is very beneficial. Take as an example the \backslash text command. In all three of my books, we first introduce the $\mathrm{ATEX}_{\mathrm{E}}$ command \mbox for typing text in math formulas. After half a page of discussion comes the sentence: "It is better to enter text in formulas with the \text command provided by the amsmath package." Then another half page discusses the command \text. In this book, we ignore \mbox and go right-away to \text. You do not have to do anything to access the command, the amsmath package is always loaded for you.

And what to do if you want to find out where a command is defined. Now for both the PC and the Mac, you can easily search for contents of files. Do you want to know where a command is defined? Search for it and it is easy to find the file in which it is introduced.

Presentations

The second big change is the widespread acceptance of the Adobe PDF format. As a result, the majority of the lectures today at math meetings are given as presentations, PDF files projected to screens using computers. Blackboards and whiteboards have largely disappeared and computer projections are overtaking projectors. So this book takes up presentations as a major topic, introducing it in Part I and discussing it in detail in Chapter 14.

Installations

In the third book, I report a recurring question that comes up from my readers again and again:

Can you help me get started from scratch, covering everything from installing a working ${ }^{L T} T_{E} X$ system to the rudiments of text editing?

And here is the third big change that has happened in the last few years. While earlier there were dozens of different $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementations and hundreds of text editors, today most PC users use MiKTeX with the text editor/front end WinEdt and most Mac users use $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live with the text editor/front end TeXShop. So if you want help to
install $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, it is easy for me to help you. Appendix A provides instructions on how to install these systems.

Acknowledgments

This book is based, of course, on the three previous books. I would like to thank the many people who read and reread those earlier manuscripts.

The editors Richard Ribstein, Thomas R. Scavo, Claire M. Connelly.
The professionals Michael Downes (the project leader for the AMS), Frank Mittelbach and David Carlisle (of the ETTEX3 team) read and criticized some or all of the three books.

Oren Patashnik (the author of BIBTEX) carefully corrected the BibTEX chapter for two editions.
Sebastian Rahtz (the author of the hyperref package and coauthor of The $L^{L T} T_{E} X$ Web Companion [18]) read the chapter on the Web in the third book.
Last but not least, Barbara Beeton of the AMS read all three books with incredible insight.

The volunteers for the second book alone, there were 29-listed there. The volunteer readers made tremendous contributions and offered hundreds of pages of corrections. No expert can substitute for the diverse points of view I got from them.

My colleagues especially Michael Doob, Harry Lakser, and Craig Platt, who have been very generous with their time.

The publishers Edwin Beschler, who believed in the project from the very beginning and guided it through a decade and Ann Kostant who continued Edwin's work.

For this book, I have had the most talented and thorough group of readers ever: Andrew Adler of the University of British Columbia, Canada, Joseph Maria Font of the University of Barcelona, Spain, and Alan Litchfield, of the Auckland University of Technology, New Zealand. Chapter 14 was read by David Derbes, Adam Goldstein, Mark Eli Kalderon, Michael Kubovy, Matthieu Masquelet, and Charilaos Skiadasand Chapter 15 by Ross Moore. Interestingly, only half of them are mathematicians, the rest are philosophers, linguists, and so on. Appendix A. 1 was read by Brian Davey and Appendix A. 2 by Richard Koch (the author of TeXShop).

The fourth edition was edited by Barbara Beeton, Edwin Beschler, and Clay Martin with Ann Kostant as the Springer editor. The roles of Edwin and Ann have changed, but not the importance of their contributions. The index was compiled with painstaking precision by Laura Kirkland. Barbara Beeton also provided a number of intriguing illustrations of quaint commands. My indebtedness to her cannot be overstated.

Introduction

Is this book for you?

This book is for the mathematician, physicist, engineer, scientist, linguist, or technical typist who has to learn how to typeset articles containing mathematical formulas or diacritical marks. It teaches you how to use $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, a typesetting markup language based on Donald E . Knuth's typesetting language $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, designed and implemented by Leslie Lamport, and greatly improved by the AMS.

Part I provides a quick introduction to $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$, from typing examples of text and math to typing your first article (such as the sample article on pages 42-43) and creating your first presentation (such as the sample presentation on pages 57-58) in a very short time. The rest of the book provides a detailed exposition of LATEX.
${ }^{\mathrm{LAT}} \mathrm{E} X$ has a huge collection of rules and commands. While the basics in Part I should serve you well in all your writings, most articles and presentations also require you to look up special topics. Learn Part I well and become passingly familiar enough with the rest of the book, so when the need arises you know where to turn with your problems.

You can find specific topics in one or more of the following sources: the Short Contents, the detailed Contents, and the Index.

What is document markup?

When you work with a word processor, you see your document on the computer monitor more or less as it looks when printed, with its various fonts, font sizes, font shapes (e.g., roman, italic) and weights (e.g., normal, boldface), interline spacing, indentation, and so on.

Working with a markup language is different. You type the source file of your article in a text editor, in which all characters appear in the same font. To indicate changes in the typeset text, you must add text markup commands to the source file.

For instance, to emphasize the phrase detailed description in a ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source file, type
\emph\{detailed description\}
The \emph command is a markup command. The marked-up text yields the typeset output
Γ
detailed description
\qquad
In order to typeset math, you need math markup commands. As a simple example, you may need the formula $\int \sqrt{\alpha^{2}+x^{2}} d x$ in an article you are writing. To mark up this formula in $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$, type
\$\int \sqrt\{\alpha^\{2\} + $\left.x^{\wedge}\{2\}\right\} \backslash, d x \$$
You do not have to worry about determining the size of the integral symbol or how to construct the square root symbol that covers $\alpha^{2}+x^{2}$. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ does it all for you.

On pages 290-293, I juxtapose the source file for a sample article with the typeset version. The markup in the source file may appear somewhat challenging at first, but I think you agree that the typeset article is a pleasing rendering of the original input.

The three layers

The markup language we shall discuss comes in three layers: $\mathrm{T}_{\mathrm{E}} \mathrm{X}, \mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, and the AMS packages, described in detail in Appendix D. Most $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ installations-including the two covered in Appendix A—automatically place all three on your computer. You do not have to know what comes from which layer, so we consider the three together and call it $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

The three platforms

Most of you run $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ on one of the following three computer types:

- A PC, a computer running Microsoft Windows
- A Mac ${ }^{1}$, a Macintosh computer running OS X
- A computer running a UNIX variant such as Solaris or Linux

The IATEX source file and the typeset version both look the same independent of what computer you have. However, the way you type your source file, the way you typeset it, and the way you look at the typeset version depends on the computer and on the $\mathrm{IT}_{\mathrm{E}} X$ implementation you use. In Appendix A, we show you how to install $\mathrm{ET}_{\mathrm{E}} X$ for a PC and a Mac. Many UNIX systems come with LETEX installed.

[^0]
What's in the book?

Part I is the Short Course; it helps you to get started quickly with LTE $_{E} X$, to type your first articles, to prepare your first presentations, and it prepares you to tackle $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ in more depth in the subsequent parts. We assume here that $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ is installed on your computer. If it is not, jump to Appendix A.

Chapter 1 introduces the terminology we need to talk about your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementations. Chapter 2 introduces how $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ uses the keyboard and how to type text. You do not need to learn much to understand the basics. Text markup is quite easy. You learn math markup-which is not so straightforward-in Chapter 3. Several sections in this chapter ease you into mathematical typesetting. There is a section on the basic building blocks of math formulas. Another one discusses equations. Finally, we present the two simplest multiline formulas, which, however, cover most of your everyday needs.

In Chapter 4, you start writing your first article and prepare your first presentation. A ${ }^{\mathrm{AT}} \mathrm{EX}$ article is introduced with the sample article intrart. tex. We analyze in detail its structure and its source file, and we look at the typeset version. Based on this, we prepare an article template, and you are ready for your first article. A quick conversion of the article intrart.tex to a presentation introduces this important topic.

Part II introduces the two most basic skills for writing with ETEX in depth, typing text and typing math.

Chapters 5 and 6 introduce text and displayed text. Chapter 5 is especially important because, when you type a $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ document, most of your time is spent typing text. The topics covered include special characters and accents, hyphenation, fonts, and spacing. Chapter 6 covers displayed text, including lists and tables, and for the mathematician, proclamations (theorem-like structures) and proofs.

Typing math is the heart of any mathematical typesetting system. Chapter 7 discusses inline formulas in detail, including basic constructs, delimiters, operators, math accents, and horizontally stretchable lines. The chapter concludes with the Formula Gallery.

Math symbols are covered in three sections in Chapter 8. How to space them, how to build new ones. We also look at the closely related subjects of math alphabets and fonts. Then we discuss tagging and grouping equations.

LATEX knows a lot about typesetting an inline formula, but not much about how to display a multiline formula. Chapter 9 presents the numerous tools $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ offers to help you do that. We start with a Visual Guide to help you get oriented.

Part III discusses the parts of a ETEX document. In Chapter 10, you learn about the structure of a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document. The most important topics are sectioning and crossreferencing. In Chapter 11, we discuss the amsart document class for articles. In particular, I present the title page information. Chapter 11 also features sampart.tex, a sample article for amsart, first in typeset form, then in mixed form, juxtaposing the source file and the typeset article. You can learn a lot about ETEX just by reading the source file one paragraph at a time and seeing how that paragraph is typeset. We con-
clude this chapter with a brief description of the AMS distribution, the packages and document classes, of which amsart is a part.

In Chapter 12 the most commonly used legacy document classes are presented, article, report, and letter (the book class is discussed in Chapter 18), along with a description of the standard $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ distribution. Although article is not as sophisticated as amsart, it is commonly used for articles not meant for publication.

In Part IV, we start with Chapter 13, discussing PDF files, hyperlinks, and the hyperref package. This prepares you for presentations, which are PDF files with hyperlinks. In Chapter 14 we utilize the beamer package for making IATEX presentations.

Part V (Chapter 15) introduces techniques to customize $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$: user-defined commands, user-defined environments, and command files. We present a sample command file, newlattice.sty, and a version of the sample article utilizing this command file. You learn how parameters that affect $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$'s behavior are stored in counters and length commands, how to change them, and how to design your own custom lists. A final section discusses the pitfalls of customization.

In Part VI (Chapters 16 and 17), we discuss the special needs of longer documents. Two applications, contained in the standard $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ distribution, BIBTEX and MakeIndex, make compiling large bibliographies and indexes much easier.
$\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ provides the book and the amsbook document classes to serve as foundations for well-designed books. We discuss these in Chapter 18. Better quality books have to use document classes designed by professionals. We provide some sample pages from a book using Springer's svmono. cls document class.

Detailed instructions are given in Appendix \mathbf{A} on how to install $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ on a PC and a Mac. On a PC we install WinEdt and MiKTeX. On a Mac, we install MacTeX, which consists of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live and TeXShop. For both installations, we describe the editing cycle and three productivity tools in sufficient detail so that you be able to handle the tasks on the sample files of the Short Course.

You will probably find yourself referring to Appendices \mathbf{B} and \mathbf{C} time and again. They contain the math and text symbol tables.

Appendix \mathbf{D} relates some historical background material on $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$. It gives you some insight into how $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ developed and how it works. Appendix E discusses the many ways we can find LATEX material on the Internet.

Appendix \mathbf{F} is a brief introduction to the use of PostScript fonts in a ${ }^{\mathrm{AT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ document. Appendix G briefly describes the use of IATEX for languages other than American English.

Finally, Appendix H discusses what we left out and points you towards some areas for further reading.

Mission statement

This book is a guide for typesetting mathematical documents within the constraints imposed by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, an elaborate system with hundreds of rules. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ allows you to perform almost any mathematical typesetting task through the appropriate application of its rules. You can customize $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ by introducing user-defined commands and environments and by changing LETEX parameters. You can also extend LATEX by invoking packages that accomplish special tasks.

It is not my goal

- to survey the hundreds of $\mathrm{ETEX}_{\mathrm{E}}$ packages you can utilize to enhance $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$
- to teach how to write $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code and to create your own packages
- to discuss how to design beautiful documents by writing document classes

The definitive book on the first topic is Frank Mittelbach and Michel Goosens's The $L^{A T} T_{E} X$ Companion, 2nd edition [46] (with Johannes Braams, David Carlisle, and Chris Rowley). The second and third topics still await authoritative treatment.

Conventions

To make this book easy to read, I use some simple conventions:

- Explanatory text is set in this typeface: Times.
- Computer Modern typewriter is used to show what you should type, as well as messages from LaTeX. All the characters in this typeface have the same width, making it easy to recognize.
- I also use Computer Modern typewriter to indicate
- Commands (\parbox)
- Environments (\align)
- Documents (intrart.tex)
- Document classes (amsart)
- Document class options (draft)
- Folders or directories (work)
- The names of packages, which are extensions of ETEX (verbatim)
- When I show you how something looks when typeset, I use Computer Modern, $\mathrm{T}_{\mathrm{E} X}$'s standard typeface:

I think you find this typeface sufficiently different from the other typefaces I have used. The strokes are much lighter so that you should not have much difficulty recognizing typeset LATEX material. When the typeset material is a separate paragraph or paragraphs, corner brackets in the margin set it off from the rest of the text-unless it is a displayed formula.

- For explanations in the text, such as

Compare of with iffy, typed as of and if \{f\} , ~ r e s p e c t i v e l y . ~
the same typefaces are used. Because they are not set off spatially, it may be a little more difficult to see that iff is set in Computer Modern roman (in Times, it looks like this: Af), whereas jiff is set in the Computer Modern typewriter typeface.

- I usually introduce commands with examples, such as

[22pt]
However, it is sometimes necessary to define the syntax of a command more formally. For instance,

[length]
where length, typeset in Computer Modern typewriter italic font, represents the value you have to supply.

Good luck and have fun.

E-mail:
gratzer@ms.umanitoba.ca
Home page:
http://www.maths.umanitoba.ca/homepages/gratzer.html

CHAPTER

Your $L^{4} T_{E} X$

Are you sitting in front of your computer, your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementation up and running? In this chapter we get you ready to tackle this Short Course. When you are done with Part I, you will be ready to start writing your articles in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

If you do not have a $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ implementation up and running, go to Appendix A. There you find precise and detailed instructions how to set up ${ }^{\text {ETEX }}$ E on a PC or a Mac. There is enough in the appendix for you to be able to handle the tasks in this Short Course. You will be pleasantly surprised at how little time it takes to set $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ up. If you use some variant of UNIX, turn to a UNIX guru who can help you set up EATEX on your computer and guide you through the basics. If all else fails, read the documentation for your UNIX system.

1.1 Your computer

We assume very little, only that you are familiar with your keyboard and with the operating system on your computer. You should know standard PC and Mac menus, pull down menus, buttons, tabs, the menu items, such as Edit>Paste, the menu item Paste on the menu Edit. You should understand folders (we use this terminology regardless of the platform, with apologies to our UNIX readers), and you need to know how to save a file and copy a file from one folder to another.

On a PC, work \backslash test refers to the subfolder test of the folder work. On a Mac, work/test designates this subfolder. To avoid having to write every subfolder twice, we use work/test, with apologies to our PC readers.

1.2 Sample files

We work with a few sample documents in this Short Course. You can type the sample documents as presented in the text, or you can download them from the Internet (see Section E.1). The samples folder also contains a copy of SymbolTables.pdf, a PDF version of Appendices B and C, the symbol tables.

I suggest you create a folder on your computer named samples, to store the downloaded sample files, and another folder called work, where you will keep your working files. Copy the documents from the samples to the work folder as needed. In this book, the samples and work folders refer to the folders you have created.

If you Save As . . . a sample file under a different name, remember the naming rule.

Rule ■ Naming of source files

The name of a ${ }^{\mathrm{AT}} \mathrm{E} \mathrm{X}$ source file should be one word (no spaces, no special characters), and end with .tex.

So first art.tex is bad, but art1.tex and FirstArt.tex are good.

1.3 Editing cycle

Watch a friend type a mathematical article in $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ and you learn some basic steps.

1. A text editor is used to create a $L^{A} T_{E} X$ source file. A source file might look like the top window in Figure 1.1:
```
\documentclass{amsart}
```

\begin\{document\} }
The hypotenuse: \$\sqrt\{a^\{2\} + b^\{2\}\}\$. I can type math!
\end\{document\} }

Note that the source file is different from a typical word processor file. All characters are displayed in the same font and size.
2. Your friend "typesets" the source file (tells the application to produce a typeset version) and views the result on the monitor (the two corners indicate material typeset by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$):

The hypotenuse: $\sqrt{a^{2}+b^{2}}$. I can type math!
as in the middle window in Figure 1.1.
3. The editing cycle continues. Your friend goes back and forth between the source file and the typeset version, making changes and observing the results of these changes.
4. The file is printed. Once the typeset version is satisfactory, it is printed, creating a paper version of the typeset article. Alternatively, your friend creates a PDF file of the typeset version (see Chapter 13.1.2).

If $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ finds a mistake when typesetting the source file, it opens a new window, the \log window, illustrated as the bottom window in Figure 1.1, and displays an error message. The same message is saved into a file, called the log file. Look at the figures in Appendix A, depicting a variety of editing windows, windows for the typeset article, and \log windows for the two $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementations discussed there.

Various $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ implementations have different names for the source file, the text editor, the typeset file, the typeset window, the log window, and the log file. Become familiar with these names for the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementation you use, so you can follow along with our discussions. In Appendix A, we bring you up to speed for the ${ }^{\mathrm{AT}} \mathrm{E} \mathrm{X}$ implementations discussed therein.

1.4 Three productivity tools

Most $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementations have these important productivity tools:
Synchronization To move quickly between the source file and the typeset file, most Lt $_{\text {E }} X$ implementations offer synchronization, the ability to jump from the typeset

```
\documentclass {amsart}
\begin{document}
The hypotenuse: $\sqrt{a^{2} + b^{2}}$. I can type math!
\end{document}
```

The hypotenuse: $\sqrt{a^{2}+b^{2}}$. I can type math!

```
1/bluesky/cm/cmmilo.pfb></usr/local/texlive/2007/texmf-dist/
fonts/typel/bluesky/cm/cmrl0.pfb></usr/local/texlive/
2007/texmf-dist/fonts/typel/bluesky/cm/cmr7.pfb>
</usr/local/texlive/2007/texmf-
dist/fonts/type1/bluesky/cm/cmsy10.pfb>
Output written on firsttest.pdf (1 page, 13858 bytes).
Transcript written on firsttest.log.
```

Figure 1.1: Windows for the source and typeset files and the log window.
file to the corresponding place in the source file and from the source file to the corresponding place in the typeset file.

Block comment Block comments are very useful:

1. When looking for a $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ error, you may want $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ to ignore a block of text in the source file (see page 51).
2. Often you may want to make comments about your project but not have them printed or you may want to keep text on hand while you try a different option. To accomplish this, insert a comment character, $\%$, at the start of each line where the text appears. These lines are ignored when the ETEX file is processed.

Select a number of lines in a source document, then by choosing a menu option all the lines (the whole block) are commented out (a \% sign is placed at the beginning of each line). This is block comment. The reverse is block uncomment.

Jump to a line This is specified by the line number in the source file. To find an error, $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ suggests that you jump to a line.

Find out how your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implements these features. In Appendix A, we discuss how these features are implemented for the $\mathrm{LATE}_{\mathrm{E}} \mathrm{X}$ we install.

Pay careful attention how your $\mathrm{ETEX}_{\mathrm{E}}$ implementation works. This enables you to rapidly perform the editing cycle and utilize the productivity tools when necessary.

Typing text

In this chapter, I introduce you to typesetting text by working through examples. More details are provided throughout the book, in particular, in Chapters 5 and 6.

A source file is made up of text, math (formulas), and instructions (commands) to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. For instance, consider the following variant of the first sentence of this paragraph:

```
A source file is made up of text, math (e.g.,
$\sqrt{5}$), and \emph{instructions to} \LaTeX.
```

This typesets as

A source file is made up of text, math (e.g., $\sqrt{5}$), and instructions to $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. L

In this sentence, the first part
A source file is made up of text, math (e.g.,
is text. Then
is math
), and
is text again. Finally,

$$
\text { \emph\{instructions to\} \LaTeX. }
$$

are instructions. The instruction \emph is a command with an argument, while the instruction \LaTeX is a command without an argument.

Commands, as a rule, start with a backslash (\backslash) and tell $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ to do something special. In this case, the command \backslash emph emphasizes its argument (the text between the braces). Another kind of instruction to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is called an environment. For instance, the commands

```
\begin{flushright}
```

and
\end\{flushright\} }
enclose a flushright environment; the content, that is, the text that is typed between these two commands, is right justified (lined up against the right margin) when typeset. (The flushleft environment creates left justified text; the center environment creates text that is centered horizontally on the page.)

In practice, text, math, and instructions (commands) are mixed. For example,
My first integral: \$ $\operatorname{int} \backslash$ zeta^\{2\}(x)
, dx\$.
is a mixture of all three; it typesets as
Γ
My first integral: $\int \zeta^{2}(x) d x$.

Creating a document in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ requires that we type the text and math in the source file. So we start with the keyboard, proceed to type a short note, and learn some simple rules for typing text in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

2.1 The keyboard

The following keys are used to type text in a source file:

$$
\begin{array}{lll}
\text { a-z } & \text { A-Z } & 0-9 \\
+=* & /() & {[]}
\end{array}
$$

You may also use the following punctuation marks:
and the space bar, the Tab key, and the Return (or Enter) key.
Since TEX source files are "pure text" (ASCII files), they are very portable. There is one possible problem limiting this portability, the line endings used in the source file. When you press the Return key, your text editor writes an invisible code into your source file that indicates where the line ends. Since this code may be different on different platforms (PC, Mac, and UNIX), you may have problems reading a source file created on a different platform. Luckily, many text editors include the ability to switch end-of-line codes and some, including the editors in WinEdt and TeXShop, do so automatically.

Finally, there are thirteen special keys that are mostly used in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ commands:

$$
\# \$ \% \& \& \sim \quad \sim \quad \mid \quad\{\quad \text { \& }
$$

If you need to have these characters typeset in your document, there are commands to produce them. For instance, $\$$ is typed as $\backslash \$$, the underscore, _, is typed as $_{-}$, and $\%$ is typed as $\backslash \%$. Only @ requires no special command, type @ to print @. There are also commands to produce composite characters, such as accented characters, for example ä, which is typed as \"\{a\}. See Section 5.4.4 for a complete discussion of symbols not available directly from the keyboard and Appendix C for the text symbol tables. Appendices B and C are reproduced in the samples folder as a PDF file, SymbolTables.pdf.
${ }^{\text {ET }} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ prohibits the use of other keys on your keyboard-unless you are using a version of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ that is set up to work with non-English languages (see Appendix G). When trying to typeset a source file that contains a prohibited character, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ displays an error message similar to the following:
! Text line contains an invalid character.
1.222 completely irreducible^"?
~~?

In this message, 1. 222 means line 222 of your source file. You must edit that line to remove the character that $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ cannot understand. The log file (see Section D.3.4) also contains this message. For more about $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ error messages, see Sections 3.2 and 4.3.1.

2.2 Your first note

We start our discussion on how to type a note in ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ with a simple example. Suppose you want to use $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ to produce the following:

It is of some concern to me that the terminology used in multi-section math courses is not uniform.

In several sections of the course on matrix theory, the term "hamiltonianreduced" is used. I, personally, would rather call these "hyper-simple". I invite others to comment on this problem.

Of special concern to me is the terminology in the course by Prof. Rudi Hochschwabauer. Since his field is new, there is no accepted terminology. It is imperative that we arrive at a satisfactory solution.

To produce this typeset document, create a new file in your work folder with the name note1.tex. Type the following, including the spacing and linebreaks shown, but not the line numbers:

```
% Sample file: note1.tex
\documentclass{sample}
4 \begin{document}
5 It is of some concern to me that
6 the terminology used in multi-section
7 math courses is not uniform.
9 In several sections of the course on
10 matrix theory, the term
11 ''hamiltonian-reduced'' is used.
12 I, personally, would rather call these
13 ''hyper-simple''. I invite others
14 to comment on this problem.
16 Of special concern to me is the terminology
17 in the course by Prof. ~Rudi Hochschwabauer.
18 Since his field is new, there is no accepted
19 terminology. It is imperative
20 that we arrive at a satisfactory solution.
21 \end{document}
```

3
8
15

Alternatively, copy the note1.tex file from the samples folder (see page 4). Make sure that sample.cls is in your work folder.

The first line of note1.tex starts with \%. Such lines are called comments and are ignored by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. Commenting is very useful. For example, if you want to add some notes to your source file and you do not want those notes to appear in the typeset version of your article, you can begin those lines with a \%. You can also comment out part of a line:
simply put, we believe \% actually, it's not so simple

Everything on the line after the \% character is ignored by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.
Line 2 specifies the document class (in our case, sample) ${ }^{1}$ that controls how the document is formatted.

The text of the note is typed within the document environment, that is, between the lines

\begin\{document\}

}and

```
\end{document}
```

Now typeset note1.tex. If you use WinEdt, click on the TeXify icon. If you use TeXShop, click the Typeset button. You should get the typeset document as shown on page 10. As you can see from this example, ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is different from a word processor. It disregards the way you input and position the text, and follows only the formatting instructions given by the markup commands. ETEX notices when you put a blank space in the text, but it ignores how many blank spaces have been inserted. $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ does not distinguish between a blank space (hitting the space bar), a tab (hitting the Tab key), and a single carriage return (hitting Return once). However, hitting Return twice gives a blank line; one or more blank lines mark the end of a paragraph.
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, by default, fully justifies text by placing a flexible amount of space between words-the interword space-and a somewhat larger space between senten-ces-the intersentence space. If you have to force an interword space, you can use the $_{\sqcup}$ command (in ETEX books, we use the symbol \sqcup to mean a blank space). See Section 5.2.2 for a full discussion.

The ~ (tilde) command also forces an interword space, but with a difference; it keeps the words on the same line. This command is called a tie or nonbreakable space (see Section 5.4.3).

Note that on lines 11 and 13, the left double quotes are typed as " (two left single quotes) and the right double quotes are typed as ' ' (two right single quotes or apostrophes). The left single quote key is not always easy to find. On an American keyboard, ${ }^{2}$ it is usually hidden in the upper-left or upper-right corner of the keyboard, and shares a key with the tilde (${ }^{\sim}$).

[^1]
2.3 Lines too wide

$\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ reads the text in the source file one line at a time and when the end of a paragraph is reached, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ typesets the entire paragraph. Occasionally, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ gets into trouble when trying to split the paragraph into typeset lines. To illustrate this situation, modify note1.tex. In the second sentence, replace term by strange term and in the fourth sentence, delete Rudi ${ }_{\sqcup}$, including the blank space following Rudi. Now save this modified file in your work folder using the name note1b.tex. You can also find note1b.tex in the samples folder (see page 4).

Typesetting note1b.tex, you obtain the following:
It is of some concern to me that the terminology used in multi-section math courses is not uniform.

In several sections of the course on matrix theory, the strange term "hamiltonianreduced" is used. I, personally, would rather call these "hyper-simple". I invite others to comment on this problem.

Of special concern to me is the terminology in the course by Prof. Hochschwabauer. Since his field is new, there is no accepted terminology. It is imperative that we arrive at a satisfactory solution.

The first line of paragraph two is about $1 / 4$ inch too wide. The first line of paragraph three is even wider. In the log window, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ displays the following messages:

```
    Overfull \hbox (15.38948pt
too wide) in paragraph at lines 9--15 []\0T1/cmr/m/n/10 In sev-eral
sec-tions of the course on ma-trix the-ory, the strange term
''hamiltonian-
Overfull \hbox (23.27834pt too wide) in paragraph
at lines 16--21
[]\0T1/cmr/m/n/10 Of spe-cial con-cern to me is the
ter-mi-nol-ogy in the course by Prof. Hochschwabauer.
```

You will find the same messages in the log file (see Sections 1.3 and D.2.1).
The first message,
Overfull \hbox (15.38948pt too wide) in paragraph
at lines 9--15
refers to the second paragraph (lines 9-15 in the source file-its location in the typeset document is not specified). The typeset version of this paragraph has a line that is 15.38948 points too wide. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ uses points (pt) to measure distances; there are about 72 points in 1 inch (or about 28 points in 1 cm).

The next two lines,

```
[]\0T1/cmr/m/n/10 In sev-eral sec-tions of the course
on ma-trix
the-ory, the strange term ''hamiltonian-
```

identify the source of the problem: ${ }^{\mathrm{ET}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ did not properly hyphenate the word hamiltonian-reduced
because it (automatically) hyphenates a hyphenated word only at the hyphen.
The second reference,

```
Overfull \hbox (23.27834pt too wide) in paragraph
at lines 16--21
```

is to the third paragraph (lines $16-21$ of the source file). There is a problem with the word Hochschwabauer; LATEX's standard hyphenation routine cannot handle it (a German hyphenation routine would have no difficulty hyphenating this name-see Appendix G). If you encounter such a problem, you can either try to reword the sentence or insert one or more optional (or discretionary) hyphen commands ($\backslash-$), which tell $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ where it may hyphenate the word. In this case, you can rewrite Hochschwabauer as Hoch \-schwa \-bauer and the second hyphenation problem disappears. You can also utilize the \hyphenation command (see Section 5.4.9).

Sometimes a small horizontal overflow can be difficult to spot. The draft document class option may help (see Sections 11.5, 12.1.2, and 18.1 for more about document class options). ETEX places a black box (or slug) in the margin to mark an overfull line. You can invoke this option by changing the \documentclass line to
\documentclass[draft] \{sample\}
A version of note1b.tex with this option can be found in the samples folder under the name noteslug.tex. Typeset it to see the "slugs".

2.4 More text features

Next, we produce the following note:

Γ

September 12, 2006

From the desk of George Grätzer

October 7-21 please use my temporary e-mail address:

```
George_Gratzer@yahoo.com
```

Type in the source file, without the line numbers. Save it as note2.tex in your work folder (note2.tex can be found in the samples folder-see page 4):

```
1 % Sample file: note2.tex
2 \documentclass{sample}
3
4 \begin{document}
5 \begin{flushright}
6 \today
7 \end{flushright}
8 \textbf{From the desk of George Gr\"{a}tzer}\\[22pt]
9 October ~7--21 \emph{please} use my
10 temporary e-mail address:
11 \begin{center}
    \texttt{George\_Gratzer@yahoo.com}
\end{center}
\end{document}
```

This note introduces several additional text features of ETEX:

- The \today command (in line 6) to display the date on which the document is typeset (so you will see a date different from the date shown above in your own typeset document).
- The environments to right justify (lines 5-7) and center (lines 11-13) text.
- The commands to change the text style, including the \emph command (line 8) to emphasize text, the \textbf command (line 9) for bold text, and the \texttt command (line 12) to produce typewriter style text.

These are commands with arguments. In each case, the argument of the command follows the name of the command and is typed between braces, that is, between \{ and \}.

- The form of the IATEX commands: Almost all $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ commands start with a backslash (\backslash) followed by the command name. For instance, \textbf is a command and textbf is the command name. The command name is terminated by the first nonalphabetic character, that is, by any character other than a-z or A-Z. So textbf 1 is not a command name, in fact, \textbf1 typesets as 1. (Let us look at this a bit more closely. \textbf is a valid command. If a command needs an argument and is not followed by braces, then it takes the next character as its argument. So \textbf 1 is the command \backslash textbf with the argument 1, which typesets as bold 1: 1.) Note that command names are case sensitive. Typing \Textbf or \TEXTBF generates an error message.
- The multiple role of hyphens: Double hyphens are used for number ranges. For example, $7--21$ (in line 9) typesets as $7-21$. The punctuation mark - is called an en
dash. Use triple hyphens for the em dash punctuation mark-such as the one in this sentence.
- The new line command, $\backslash \backslash$ (or \backslash newline): To create additional space between lines (as in the last note, under the line From the desk...), you can use the $\backslash \backslash$ command and specify an appropriate amount of vertical space: $\backslash \backslash[22 \mathrm{pt}]$. Note that this command uses square brackets rather than braces because the argument is optional. The distance may be given in points (pt), centimeters (cm), or inches (in). (There is an analogous new page command,
, not used in this short note.)
- Special rules for special characters (see Section 2.1), for accented characters and for some European characters. For instance, the accented character ä is typed as \backslash " $\{\mathrm{a}\}$. Accents are explained in Section 5.4.7 (see also the tables in Section C.2).

When you need to know more about typing text than we have discussed here, see Chapters 5 and 6. See also Appendix C, where all text symbols are organized into tables. Recall that we also have the SymbolTables.pdf in the samples folder.

While marking up text in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is easy, marking up math is less intuitive because math formulas are two-dimensional constructs and we have to mark them up with a one-dimensional string of characters. However, even the most complicated twodimensional formula is made up of fairly simple building blocks. So by concentrating on the building blocks-selectively, just learn the ones you need-you can get started with math quickly.

3.1 A note with math

In addition to the regular text keys and the 13 special keys discussed in Section 2.1, two more keys are used to type math:

$$
<>
$$

The formula $2<|x|>y$ (typed as $\$ 2<|\mathrm{x}|>\mathrm{y} \$$) uses both. Note that such math formulas, called inline, are enclosed by $\$$ symbols. We discuss shortly another kind of math formula called displayed.

We begin typesetting math with the following note:

In first-year calculus, we define intervals such as (u, v) and (u, ∞). Such an interval is a neighborhood of a if a is in the interval. Students should realize that ∞ is only a symbol, not a number. This is important since we soon introduce concepts such as $\lim _{x \rightarrow \infty} f(x)$.

When we introduce the derivative

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a},
$$

we assume that the function is defined and continuous in a neighborhood of a.

To create the source file for this mixed text and math note, create a new document with your text editor. Name it math.tex, place it in the work folder, and type in the following source file-without the line numbers-or simply copy math.tex from the samples folder (see page 4):

```
    1 % Sample file: math.tex
    2 \documentclass{sample}
3
4 \begin{document}
5 In first-year calculus, we define intervals such
6 as $(u, v)$ and $(u, \infty)$. Such an interval
7 is a \emph{neighborhood} of $a$
8 if $a$ is in the interval. Students should
9 realize that $\infty$ is only a
10 symbol, not a number. This is important since
11 we soon introduce concepts
12 such as $\lim_{x \to \infty} f(x)$.
13
14 When we introduce the derivative
15 \[
16
    \lim_{x \to a} \frac{f(x) - f(a)}{x - a},
1 7
18 we assume that the function is defined and
19 continuous in a neighborhood of $a$.
20 \end{document}
```

This note introduces several basic concepts of math in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$:

- There are two kinds of math formulas and environments in math.tex:
- Inline math environments open and close with $\$$ (as seen throughout this book) or open with \backslash (and close with \backslash).
- Displayed math environments open with \[and close with $\backslash]$.
- Within math environments, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ uses its own spacing rules and completely ignores the white space you type, with two exceptions:
- Spaces that terminate commands. So in $\$ \backslash i n f t y ~ a \$ ~ t h e ~ s p a c e ~ i s ~ n o t ~ i g n o r e d, ~$ $\$$ inftya\$ produces an error.
- Spaces in the arguments of commands that temporarily revert to regular text. \text is such a command (see Sections 3.3 and 7.4.6).

The white space that you add when typing math is important only for the readability of the source file. We summarize with a simple rule.

Rule $■$ Spacing in text and math

Many spaces equal one space in text, whereas your spacing is ignored in math, unless the space terminates a command.

- A math symbol is invoked by a command. For example, the command for ∞ is \infty and the command for \rightarrow is \to. The math symbols are organized into tables in Appendix B (see also SymbolTables.pdf in the samples folder).
- Some commands, such as \sqrt, need arguments enclosed by \{ and \}. To typeset $\sqrt{5}$, type $\$ \backslash$ sqrt $\{5\} \$$, where \backslash sqrt is the command and 5 is the argument. Some commands need more than one argument. To get

$$
\frac{3+x}{5}
$$

type

$$
```
        \frac{3+x}{5}
```
$$

where $\backslash f r a c$ is the command, $3+\mathrm{x}$ and 5 are the arguments-we indent for readability.

3.2 Errors in math

Even in such a simple note there are opportunities for errors. To help familiarize yourself with some of the most commonly seen $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ math errors and their causes, we deliberately introduce mistakes into math.tex. The version of math.tex with mistakes is mathb.tex. By inserting and deleting \% signs, you make the mistakes visible to ${ }^{\mathrm{ET}} \mathrm{EX}$ one at a time-recall that lines starting with \% are comments and are therefore ignored by $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.

Type the following source file, and save it under the name mathb.tex in the work folder or copy the file mathb.tex from the samples folder (see page 4). Do not type the line numbers-they are shown here to help you with the experiments.

```
% Sample file: mathb.tex
\documentclass{sample}
4 \begin{document}
5 In first-year calculus, we define intervals such
6 % as $(u, v)$ and $(u, \infty)$. Such an interval
7 as $(u, v)$ and (u, \infty)$. Such an interval
8 is a \emph{neighborhood} of $a$
9 if $a$ is in the interval. Students should
10 realize that $\infty$ is only a
11 symbol, not a number. This is important since
12 we soon introduce concepts
13 such as $\lim_{x \to \infty} f(x)$.
14 %such as $\lim_{x \to \infty f(x)$.
16 When we introduce the derivative
18 \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
19 % \lim_{x \to a} \frac{f(x) - f(a) x - a}
21 we assume that the function is defined and
22 continuous in a neighborhood of $a$.
23 \end{document}
```

3
15

17 $$
20
$$

Experiment 1 In line 7, the $\$$ before the (u is missing. Typeset the mathb.tex source file. $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ generates the following error message:
! Missing \$ inserted.
<inserted text>
\$
1.7 as $\$(u, v) \$$ and (u, \infty
)\$. Such an interval

Since the $\$$ was omitted, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ reads (u , \infty) as text; but the \infty command instructs $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ to typeset a math symbol, which can only be done in a math formula. So $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ offers to put a $\$$ in front of \infty while typesetting the source file-it does not put the $\$$ in the source file itself. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ attempts a cure, but in this example it comes too late, because the math formula should start just before (u.

Whenever you see the ? prompt, you may press Return to ignore the error and continue typesetting the document. Section D. 4 lists a number of other options and prompts.

Experiment 2 Uncomment line 6 by deleting the \% at the beginning of line 6 and comment out line 7 by inserting a \% at the beginning of line 7 . This eliminates the previous error. Uncomment line 14 and comment out line 13. This introduces a new error, the closing brace of the subscript is missing. Now typeset the note. You get the error message

```
! Missing } inserted.
<inserted text>
    }
l.14 such as $\lim_{x \to \infty f(x)$
```

$\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ reports that a closing brace (\}) is missing, but it is not sure where the brace should be. ${ }^{\mathrm{LT}} \mathrm{TEX}_{\mathrm{E}} \mathrm{X}$ noticed that a subscript (see page 23) started with \{, but $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ reached the end of the math formula before finding a closing brace \}. To remedy this, you must look in the formula for an opening brace $\{$ that is not balanced, and insert the missing closing brace \}. Make the necessary change and typeset again to view the difference.

Experiment 3 Uncomment line 13 and comment out line 14, removing the previous error. Delete the \% at the beginning of line 19 and insert a \% at the beginning of line 18, introducing our final error, omitting the closing brace of the first argument and the opening brace of the second argument of \frac. Save and typeset the file. You get the error message

```
! Too many }'s.
\frac #1#2->{\begingroup #1\endgroup \@@over #2}
```

1.20 \]

LATEX got confused. The second line of the message explains that \frac has two arguments and it is not working out, but the error is incorrectly identified.

If the typo on line 19 is $\backslash f r a c\{f(x)-f(a) x-a\} g$, then $\mathrm{ET}_{\mathrm{E}} X$ produces

$$
\frac{f(x)-f(a) x-a}{g}
$$

and no error message is generated.
Experiment 4 Make sure all the errors are commented out. Typeset mathb.tex, testing that there are no errors. Now delete the two $\$$ signs in line 22, that is, replace $\$ \mathrm{a} \$$ by a. Typeset the file. It typesets with no errors. Here is the last line of the typeset file you get:
we assume that the function is defined and continuous in a neighborhood of a.
\qquad
instead of
\square
we assume that the function is defined and continuous in a neighborhood of a.

This is probably the error most often made by beginners. There is no error message by IATEX $_{\mathrm{E}} \mathrm{X}$ and the typeset version looks good. You need sharp eyes to catch such an error.

See Section 4.3.1 for more information about finding and fixing problems in your ETEX source files.

3.3 Building blocks of a formula

A formula is built from a large collection of components. We group them as follows:

- Arithmetic
- Subscripts and superscripts
- Binomial coefficients
- Congruences
- Delimiters
- Ellipses
- Integrals
- Math accents
- Matrices
- Operators
- Large operators
- Roots
- Text

In this section, I describe each of these groups, and provide examples illustrating their use.

Arithmetic The arithmetic operations $a+b, a-b,-a, a / b$, and $a b$ are typed in the natural way (the spaces are typed only for readability, others may type fewer spaces):
\$a + b\$, \$a - b\$, \$-a\$, \$a / b\$, \$a b\$
If you wish to use \cdot or \times for multiplication, as in $a \cdot b$ or $a \times b$, use $\backslash c d o t$ or \times, respectively. The expressions $a \cdot b$ and $a \times b$ are typed as follows:
\$a \cdot b\$ \$a \times b\$

Displayed fractions, such as

$$
\frac{1+2 x}{x+y+x y}
$$

are typed with \frac:

```
\[
    \frac{1 + 2x}{x + y + xy}
\]
```

The \frac command is seldom used inline because it can disrupt the interline spacing of the paragraph.

Subscripts and superscripts Subscripts are typed with _ (underscore) and superscripts with ^ (caret). Subscripts and superscripts should be enclosed in braces, that is, typed between $\left\{\right.$ and \}. To get a_{1}, type \$a_\{1\}\$. Omitting the braces in this example causes no harm, but to get a_{10}, you must type $\$ a_{-}\{10\} \$$. Indeed, $\$ a_{-} 10 \$$ is typeset as $a_{1} 0$. Further examples, $a_{i_{1}}, a^{2}$, $a^{i_{1}}, a_{n}^{2}$, are typed as

```
$a_{i_{1}}$, $a^{2}$, $a^{i_{1}}$, $a_{n}^{2}$
```

There is one symbol, the prime ('), that is automatically superscripted in math. To get $f^{\prime}(x)$, just type $\$ \mathrm{f}^{\prime}(\mathrm{x}) \$$.

Binomial coefficients Binomial coefficients are typeset with the \binom command. For example, $\binom{a}{b+c}$ is typed inline as
$\$ \backslash$ binom $\{a\}\{b+c\} \$$
whereas a displayed version,

$$
\binom{\frac{n^{2}-1}{2}}{n+1}
$$

is typed as

$$
\(\backslash\) binom \(\{\) frac\{n^\{2\}-1\}\{2\} \(\}\{n+1\}\)
$$

Congruences The two most important forms are

$$
\begin{array}{lll}
a \equiv v(\bmod \theta) & \text { typed as } & \text { \$a \equiv v } \backslash \mathrm{pmod}\{\backslash \text { theta\} } \\
a \equiv v(\theta) & \text { typed as } & \text { \$a \equiv v } \backslash \operatorname{pod}\{\backslash \text { theta }\} \$
\end{array}
$$

Delimiters Parentheses and square brackets are examples of delimiters. They are used to delimit some subformulas, as in $\$[(a * b)+(c * d)] \wedge\{2\} \$$, which typesets as $[(a * b)+(c * d)]^{2}$. IATEX can be instructed to expand them vertically to enclose a formula such as

$$
\left(\frac{1+x}{2+y^{2}}\right)^{2}
$$

which is typed as

```
\[
    \left( \frac{1 + x}{2 + y^{2}} \right)^{2}
\]
```

The \left (and $\backslash r i g h t)$ commands tell $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to size the parentheses correctly, relative to the size of the symbols inside the parentheses. Two further examples,

$$
\left|\frac{a+b}{2}\right|, \quad\left\|A^{2}\right\|
$$

would be typed as

```
\[
    \left| \frac{a + b}{2} \right|,
    \quad \left\\ A^{2} \right\।
\]
```

where \quad is a spacing command (see Sections 8.1 and B.9).
Additional delimiters are listed in Sections 7.5 and B.6.
Ellipses The ellipsis (...) in text is provided by the \dots command:
A... Z is typed as $\mathrm{A} \backslash \operatorname{dots} \mathrm{Z}$

In formulas, the ellipsis is printed either as low (or on-the-line) dots:
$F\left(x_{1}, \ldots, x_{n}\right)$ is typed as $\$ \mathrm{~F}\left(\mathrm{x}_{-}\{1\}, \backslash \operatorname{dots}, \mathrm{x}_{-}\{\mathrm{n}\}\right) \$$ or as centered dots:
$x_{1}+\cdots+x_{n}$ is typed as $\$ \mathrm{x}_{-}\{1\}+\backslash$ dots $+\mathrm{x}_{-}\{\mathrm{n}\} \$$
The command \dots typesets the correct ellipsis with the correct spacing in most cases. If it does not, see Section 7.4.3 on how to specify the appropriate ellipsis from the four types available.

Integrals The command for an integral is \int. The lower limit is specified as a subscript and the upper limit is specified as a superscript. For example, the formula $\int_{0}^{\pi} \sin x d x=2$ is typed as
$\$ \backslash i n t _\{0\} へ\{$ pi\} $\backslash \sin \mathrm{x} \backslash, \mathrm{dx}=2 \$$
where \backslash, is a spacing command (see Sections 8.1 and B.9).
Math accents The four most frequently used math accents are:

\bar{a}	typed as	$\$ \backslash \operatorname{bar}\{\mathrm{a}\} \$$
\hat{a}	typed as	$\$ \backslash$ hat $\{\mathrm{a}\} \$$
\tilde{a}	typed as	$\$ \backslash$ tilde\{a\}\$
\vec{a}	typed as	$\$ \backslash \operatorname{vec}\{\mathrm{a}\} \$$

See Sections 7.7 and B. 8 for complete lists.
Matrices You type the matrix

$$
\begin{array}{cccc}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 134
\end{array}
$$

with the \matrix command

```
\[
    \begin{matrix}
        a + b + c & uv & x - y & 27\\
        a + b & u + v & z & 134
    \end{matrix}
\]
```

The matrix environment separates adjacent matrix elements within a row with ampersands ($\&$). Rows are separated by new line commands ($\backslash \backslash$). Do not end the last row with a new line command!

The matrix environment has to appear within a math environment, as in the example. As a rule, it is in a displayed math environment, since inline it appears too large. It can be used in the align environment discussed in Section 3.4.2.

The matrix environment does not provide delimiters. Several variants do, including pmatrix and vmatrix. For example,

$$
\mathbf{A}=\left(\begin{array}{cc}
a+b+c & u v \\
a+b & u+v
\end{array}\right)\left|\begin{array}{cc}
30 & 7 \\
3 & 17
\end{array}\right|
$$

is typed as follows:

```
\[
    \mathbf{A} =
    \begin{pmatrix}
        a + b + c & uv\\
        a + b & u + v
\end{pmatrix}
\begin{vmatrix}
        30 & 7\\
        3 & 17
    \end{vmatrix}
\]
```

As you can see, pmatrix typesets as a matrix between a pair of \left(and \right) commands, while vmatrix typesets as a matrix between a pair of \left| and \right| commands. See Section 9.7.1 for a listing of all the matrix variants.

Operators To typeset the sine function, $\sin x$, type $\$ \backslash \sin \mathrm{x} \$$.
Note that $\$ \sin \mathrm{x} \$$ would be typeset as $\sin x$ because $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ interprets this expression as the product of four variables.
$\mathrm{LATE}_{\mathrm{E}} \mathrm{X}$ calls \backslash sin an operator. Sections 7.6 .1 and B. 7 list a number of operators. See Section 7.6.2 for user-defined operators. Some are just like \sin. Others produce a more complex display, for example,

$$
\lim _{x \rightarrow 0} f(x)=0
$$

is typed as

```
\[
    \lim_{x \to 0} f(x) = 0
```

\]

Large operators The command for sum is \sum and for product is \backslash prod. The following examples,

$$
\sum_{i=1}^{n} x_{i}^{2} \quad \prod_{i=1}^{n} x_{i}^{2}
$$

are typed as

```
\[
\sum_{i=1}^{n} x_{i}^{2} \qquad
\prod_{i=1}^{n} x_{i}^{2}
```

\]

where \qquad is a spacing command (see Sections 8.1 and B.9) used to separate the two formulas, yielding twice the space produced by \quad.
Sums and products are examples of large operators. They are typeset bigger when displayed than inline. They are listed in Sections 7.6.4 and B.7.1.

Roots \sqrt produces a square root. For instance, $\sqrt{a+2 b}$ is typed as
\$\sqrt\{a + 2b\}\$
The n-th root, $\sqrt[n]{5}$, requires the use of an optional argument, which is specified using brackets (see Section 5.3.1): \$\sqrt [n] \{5\}\$.

Text You can include text in a formula with a \backslash text command. For instance,

$$
a=b, \quad \text { by assumption }
$$

is typed as

```
\[
    a = b, \text{\qquad by assumption}
\]
```

Note the spacing command \qquad in the argument of \text. You could also type
$\mathrm{a}=\mathrm{b}$, \qquad \text\{by assumption\}
\]

because \qquad works in math as well as in text (see Sections 8.1 and B.9).

3.4 Displayed formulas

3.4.1 Equations

The equation environment creates a displayed math formula and automatically generates an equation number. The equation

$$
\begin{equation*}
\int_{0}^{\pi} \sin x d x=2 \tag{1}
\end{equation*}
$$

is typed as

```
\begin{equation}\label{E:firstInt}
    \int_{0}^{\pi} \sin x \, dx = 2
\end{equation}
```

The equation number, which is automatically generated, depends on how many other numbered equations occur before the given equation.

To reference this formula without having to remember a number-which may change when you edit your document-give the equation a symbolic label by using the \label command and refer to the equation in your document by using the symbolic label, the argument of the \label command. In this example, I have called the first equation first Int (first integral), and used the convention that the label of an equation starts with E :, so that the complete \backslash label command is
\label\{E:firstInt\}
The number of this formula is referenced with the \ref command. Its page is referenced using the \pageref command. For example, to get

see (1) on page 27
L
type
see ${ }^{\sim}(\backslash r e f\{E: f i r s t I n t\})$ on page \pageref $\{E:$ firstInt $\}$
The \eqref command provides the reference number in parentheses. So the last example could be typed

```
see~\eqref{E:firstInt} on page~\pageref{E:firstInt}
```

The \eqref command is smart. Even if the equation number is referenced in emphasized or italicized text, the reference typesets upright (in roman type).

Note the use of the nonbreakable space (${ }^{\sim}$) to ensure that when typeset the equation number is on the same line as the word see. (See the footnote on page 11.) You should always use a nonbreakable space to link a \ref command to the name of its part, for instance, equation, page, section, chapter. Use two nonbreakable spaces in

The main advantage of this cross-referencing system is that when you add, delete, or rearrange equations, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ automatically renumbers the equations and adjusts the references that appear in your typeset document. You can split a long article into two or move a section to the end, and $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ takes care of the renumbering. This significantly reduces the amount of time you need to spend working on your document. It also reduces the potential for errors in the finished project.

Rule ■ Typeset twice

For renumbering to work, you have to typeset the source file twice.

The first run creates a list of references that need to be linked. The second creates the cross references and inserts the relevant text throughout the document (see Sections 18.2 and D.3.4). ETTEX issues a warning if you forget. Such warnings do not interrupt the typesetting, you only see them in the log window-if the window is visible-and in the log file. It is a good idea to check for warnings periodically.

An equation is numbered whether or not there is a \backslash label command attached to it. Of course, if there is no \label command, the number generated for the equation by LATEX cannot be referenced with the command \backslash ref or \backslash eqref.

The system described here is called symbolic referencing. The symbol for the number is the argument of the \label command, and that symbol can be referenced with \ref, \eqref, or \pageref commands. ${ }^{\mathrm{AT}} \mathrm{E} \mathrm{X}$ uses the same mechanism for all of the generated numbering systems: sections, subsections, subsubsections, equations, theorems, lemmas, and bibliographic references-except that for bibliographic references, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ uses the \backslash bibitem command to define a bibliographic item and the \cite command to cite a bibliographic item (see Section 4.2.4 and Chapter 16).

What happens if you misspell a reference, e.g., typing \ref\{E:firstint\} instead of $\backslash r e f\{E: f i r s t I n t\} ?$ ETEX typesets ??. There are two warnings in the log file:

```
LaTeX Warning: Reference 'E:firstint' on page 39
    undefined on input line 475.
```

for the typeset page and the other one close to the end:
LaTeX Warning: There were undefined references.
If a \cite is misspelled, you get [?] and similar warnings.
Equations can also be tagged by attaching a name to the formula with the \tag command. The tag replaces the equation number.

For example,
(Int)

$$
\int_{0}^{\pi} \sin x d x=2
$$

is typed as

```
\begin\{equation\} }
    \int_\{0\}^\{\pi\} \sin \(x\) \\, \(d x=2\) \tag\{Int\}
\end\{equation\} }
```

Tags (of the type discussed here) are absolute. This equation is always referred to as (Int). Equation numbers, on the other hand, are relative, they may change when equations are added, deleted, or rearranged.

3.4.2 Aligned formulas

LTEX has many ways to typeset multiline formulas. We discuss three constructs in this section: simple alignment, annotated alignment, and cases. See Chapter 9 for many others.

For simple and annotated alignment we use the align environment. Each line in the align environment is a separate equation, which $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ automatically numbers.

Simple alignment

Simple alignment is used to align two or more formulas. To obtain the formulas

$$
\begin{align*}
r^{2} & =s^{2}+t^{2}, \tag{2}\\
2 u+1 & =v+w^{\alpha}, \tag{3}\\
x & =\frac{y+z}{\sqrt{s+2 u}} ; \tag{4}
\end{align*}
$$

type the following, using $\backslash \backslash$ as the line separator and \& as the alignment point:

```
\begin{align}
    r^{2} &= s^{2} + t^{2}, \label{E:Pyth}\\
    2u + 1 &= v + w^{\alpha}, \label{E:alpha}\\
            x &= \frac{y + z}{\sqrt{s + 2u}};\label{E:frac}
\end{align}
```

Note that you should not have a $\backslash \backslash$ to terminate the last line.
Figure 3.1 displays the source and the typeset versions of formulas (2)-(4), emphasizing the alignment points of the source and the typeset formula. Of course, in the source, the alignment points do not have to line up.

These formulas are numbered (2), (3), and (4) because they are preceded by one numbered equation earlier in this section.

The align environment can also be used to break a long formula into two or more parts. Since numbering both lines in such a case would be undesirable, you can prevent the numbering of the second line by using the \notag command in the second part of the formula.

For example,

$$
\begin{align*}
h(x) & =\int\left(\frac{f(x)+g(x)}{1+f^{2}(x)}+\frac{1+f(x) g(x)}{\sqrt{1-\sin x}}\right) d x \tag{5}\\
& =\int \frac{1+f(x)}{1+g(x)} d x-2 \tan ^{-1}(x-2)
\end{align*}
$$

is typed as follows:

```
\begin{align}
    h(x) &= \int \left( \frac{f(x) + g(x)}{1+ f^{2}(x)}
```


Figure 3.1: Simple alignment: source and typeset.

```
        + \frac{1+ f(x)g(x)}{\sqrt{1 - \sin x}}
        \right) \, dx\label{E:longInt}\\
        &= \int \frac{1 + f(x)}{1 + g(x) } \, dx
            - 2 \tan^{-1}(x-2)\notag
```

\end\{align\} }

The rules for simple alignment are easy to remember.

Rule ■ Simple alignments

- Use the align environment.
- Separate the lines with $\backslash \backslash$.
- In each line, indicate the alignment point with \&, one \& per line. If the alignment point is adjacent to an $=,+$, and so on, place it before to ensure proper spacing.
- Place a \notag command in each line that you do not wish numbered.
- If no line should be numbered, use the align* environment.
- Place a \label command in each numbered line you may want to reference with \ref, \eqref, or \pageref.
aligned formulas

```
x & &= x \wedge (y \vee z)
    I}&=(x \wedge y) \vee (x \wedge z)
    !}&= y \vee z
    alignment points
    of formulas
```

annotation

I\&\&
'\&\& 1 text $\{($ by condition (M)) $\} \backslash \backslash$
1
alignment points of annotations
aligned formulas
annotation

$x \mathrm{l}=x \wedge(y \vee z)$	I(by distributivity)
$1=(x \wedge y) \vee(x \wedge z)$	(by condition (M))
$\mathrm{I}=y \vee z$.	,
alignment points of formulas	of annotations

Figure 3.2: Annotated alignment: source and typeset.

Annotated alignment

Annotated alignment allows you to align formulas and their annotations, that is, explanatory text, separately (see Figure 3.2):

$$
\begin{array}{rlrl}
x & =x \wedge(y \vee z) & & \text { (by distributivity) } \tag{6}\\
& =(x \wedge y) \vee(x \wedge z) & & \text { (by condition (M)) } \\
& =y \vee z . &
\end{array}
$$

This example is typed as

```
\begin\{align\} }
    \(\mathrm{x} \&=\mathrm{x}\) \wedge ( y \vee z )
        \&\&\text\{(by distributivity)\}\label\{E:DoAlign\}\\
    \& = ( \(x\) \wedge \(y\) ) \vee ( \(x\) \wedge \(z\) )
        \(\& \& \backslash \operatorname{text}\{(b y\) condition (M))\} \notag \(\backslash \backslash\)
    \&= y \vee z. \notag
\end\{align\} }
```

The rules for annotated alignment are similar to the rules of simple alignment. In each line, in addition to the alignment point marked by \&, there is also a mark for the start of the annotation: \&\&.

3.4.3 Cases

The cases construct is a specialized matrix. It has to appear within a math environment such as the equation environment (see Section 3.4.1) or the align environment (see Section 3.4.2). Here is a typical example:

$$
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
$$

is typed as follows:

```
\[
    f(x)=
    \begin{cases}
        -x^{2}, &\text{if $x < 0$;}\\
        \alpha + x, &\text{if $0 \leq x \leq 1$;}\\\
        x^{2}, &\text{otherwise.}
    \end{cases}
```

\]

Notice how you can put inline math, opened and closed with \$, inside the argument of a \text command.

The rules for using the cases environment are the same as for matrices. Separate the lines with $\backslash \backslash$ and indicate the annotation with \&

Your first article and presentation

4.1 The anatomy of an article

To begin, we use the sample article intrart.tex (in the samples folder) to examine the anatomy of an article. Copy it over to the work folder or type it, and save it in the work folder as we discuss the parts of an article.

Every $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ article has two parts, the preamble and the body. The preamble of an article is everything from the first line of the source file down to the line

\begin\{document\}

}For a schematic view of an article, see Figure 4.1.
The preamble contains instructions affecting the entire document. The only required command in the preamble is the areothercommands(suchasthe\usepackagecommands)thatmustbeplacedinthepreambleiftheyareused,butthesecommandsdonothavetobepresentineverydocument.undefined

Here is the preamble of the introductory sample article:

```
% Introductory sample article: intrart.tex
\documentclass{amsart}
\usepackage{amssymb,latexsym}
\usepackage{graphicx}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}
```

The preamble specifies the document class and then the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ enhancements, or packages, used in the article. The preamble can also specify additional commands that are used throughout the document, such as proclamation definitions, user-defined commands, and so on.
intrart.tex specifies the amsart document class. This class defines the format used by the AMS journals-and many others-for articles. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ then loads two pack-

```
\documentclass{...}
\usepackage{...}
preamble
```


Figure 4.1: A schematic view of an article.
ages, latexsym and amssymb, that provide the names of some mathematical symbols. Finally, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ loads the graphicx package, which we need because of the illustration.

The preamble concludes with the proclamations. A proclamation is a theorem, lemma, definition, corollary, note, or other similar construct. The intrart.tex article defines four proclamations. The first of these,
\newtheorem\{theorem\}\{Theorem\}
defines the theorem environment, which then can be used in the body of the article, as explained in Section 4.2.3. The other three are similar. $\mathrm{ETEX}_{\mathrm{E}}$ automatically numbers and formats proclamations.

The article proper, called the body, is the content of the document environmentit is between the lines

```
\begin{document}
```

and
\end\{document\} }
as illustrated in Figure 4.1. The body of an article is split into several parts, starting with the top matter containing title page information and the abstract. The top matter follows the line
\begin\{document\} }
and concludes with the line
\maketitle
Here is the top matter of the introductory sample article:

```
\title{A construction of complete-simple\\
    distributive lattices}
\author{George~A. Menuhin}
\address{Computer Science Department\\
        University of Winnebago\\
        Winnebago, MN 53714}
\date{March 15, 2006}
\begin{abstract}
In this note, we prove that there exist
\emph{complete-simple distributive lattices,}
that is, complete distributive lattices
with only two complete congruences.
\end{abstract}
```

And here is the rest of the body of the introductory sample article with some commentary, exclusive of the bibliography:

```
\section{Introduction}\label{S:intro}
In this note, we prove the following result:
\begin\{theorem\} }
There exists an infinite complete distributive lattice \({ }^{\sim}\) KK with only the two trivial complete congruence relations.
\end\{theorem\} }
```

```
\section{The $\Pi^{*}$ construction}\label{S:P*}
The following construction is crucial in the proof
of our Theorem (see Figure~\ref{Fi:products}):
```

\begin\{definition\}\label\{D:P*\} }
Let \$D_\{i\}\$, for \$i \in I\$, be complete distributive
lattices satisfying condition~\textup\{(J)\}. Their
$\$ \backslash \mathrm{Pi}^{\wedge}\{*\} \$$ product is defined as follows:
\
$\backslash \mathrm{Pi}^{\wedge}\{*\}\left(\mathrm{D}_{\mathrm{\prime}}\{\mathrm{i}\} \backslash \mathrm{mid} \mathrm{i} \backslash i n \mathrm{I}\right)=$
\backslash Pi ($\left.D_{-}\{i\} \wedge\{-\} \backslash m i d i \backslash i n ~ I\right)+1 ;$
\]

$\$ \backslash P i\left(D_{-}\{i\} へ\{-\} \backslash m i d i \backslash i n ~ I\right) \$$ with a new
unit element.
\end\{definition\} }
\begin\{notation\} }
If \$i \in I\$ and \$d \in D_\{i\}^\{-\}\$, then

$$
\langle \dots, 0, \dots, d, \dots, 0, \dots \rangle
$$

\$i\$-th component is $\$ \mathrm{~d} \$$ and all the other components
are $\$ 0 \$$.
\end\{notation\} }
See also Ernest~T. Moynahan~\cite\{eM57a\}.
Next we verify the following result:

```
\begin{theorem}\label{T:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.
Let $\Theta$ be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
\begin{equation}\label{E:cong1}
    \langle \dots, d, \dots, 0, \dots \rangle \equiv
    \langle \dots, c, \dots, 0, \dots \rangle
    \pod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
```

We include an illustration, products.eps or products.pdf (in your samples folder). We copy them over to the work folder and load the graphicx package. We name the illustration in the figure environment. The illustration must be in the graphic image file formats EPS or PDF (see Chapter 13.1.2). We left the argument of the \caption command empty-it normally contains the name or a description of the figure. The illustration is centered with the command (see Section 6.3).

```
\begin{figure}[hbt]
\centering\includegraphics{products}
\caption{}\label{Fi:products}
\end{figure}
```

The figure environment floats, that is, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ decides where to place the typeset figure. We can influence $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$'s choice (see Section 10.4.3).

Then we place a proof in a proof environment.

```
\begin{proof}
Since
\begin{equation}\label{E:cong2}
\langle \dots, d, \dots, 0, \dots \rangle \equiv
\langle \dots, c, \dots, 0, \dots \rangle
\pod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation,
it follows from condition~(J) that
\begin{equation}\label{E:cong}
    \langle \dots, d, \dots, 0, \dots \rangle \equiv
\bigvee ( \langle \dots, c, \dots, 0, \dots \rangle
\mid d \leq c < 1 ) \pod{\Theta}.
```

```
\end{equation}
Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2}
with $\langle \dots, a, \dots, 0, \dots \rangle$,
we obtain that
\begin{equation}\label{E:comp}
    0 = \langle \dots, a, \dots, 0, \dots \rangle
        \pod{\Theta},
\end{equation}
Using the completeness of $\Theta$ and \eqref{E:comp},
we get:
\[
    0 \equiv \bigvee ( \langle \dots, a, \dots, 0,
        \dots \rangle \mid a \in D_{j}^{-} ) = 1
        \pod{\Theta},
\]
hence $\Theta = \iota$.
\end{proof}
```

At the end of the body, the bibliographic entries are typed between the lines
\begin\{thebibliography\}\{9\} }
and
\end\{thebibliography\} }
There are fewer than 10 references in this article, so we tell $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ to make room for single-digit numbering by providing the argument 9 to the thebibliography environment. We use 99 if the number of references is between 10 and 99 . The typeset bibliography is titled References.

The bibliography of intrart.tex is structured as follows:
\begin\{thebibliography\}\{9\} }
\bibitem\{sF90\}
Soo-Key Foo,
\emph\{Lattice Constructions\},
Ph.D. thesis,
University of Winnebago, Winnebago, MN, December, 1990.
\bibitem\{gM68\}
George ${ }^{\sim}$ A. Menuhin,

```
\emph{Universal algebra}.
D. `Van Nostrand, Princeton, 1968.
```

\bibitem\{eM57\}
Ernest~T. Moynahan,
\emph\{On a problem of M. Stone\},
Acta Math. Acad. Sci. Hungar. \textbf\{8\} (1957),
455--460.
\bibitem\{eM57a\}
Ernest~T. Moynahan,
\emph\{Ideals and congruence relations in
lattices\}. II,
Magyar Tud. Akad. Mat. Fiz. Oszt. K\"\{o\}zl.
\textbf\{9\} (1957), 417--434.
\end\{thebibliography\} }

The body and the article end when the document environment is closed with

```
\end{document}
```


4.1.1 The typeset sample article

On the next two pages, you find the typeset intrart.tex, the introductory sample article.

A CONSTRUCTION OF COMPLETE-SIMPLE DISTRIBUTIVE LATTICES

GEORGE A. MENUHIN

Abstract

In this note, we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices with only two complete congruences.

1. Introduction

In this note, we prove the following result:
Theorem 1. There exists an infinite complete distributive lattice K with only the two trivial complete congruence relations.

2. The Π^{*} construction

The following construction is crucial in the proof of our Theorem (see Figure 1):
Definition 1. Let D_{i}, for $i \in I$, be complete distributive lattices satisfying condition (J). Their Π^{*} product is defined as follows:

$$
\Pi^{*}\left(D_{i} \mid i \in I\right)=\Pi\left(D_{i}^{-} \mid i \in I\right)+1
$$

that is, $\Pi^{*}\left(D_{i} \mid i \in I\right)$ is $\Pi\left(D_{i}^{-} \mid i \in I\right)$ with a new unit element.
Notation 1. If $i \in I$ and $d \in D_{i}^{-}$, then

$$
\langle\ldots, 0, \ldots, d, \ldots, 0, \ldots\rangle
$$

is the element of $\Pi^{*}\left(D_{i} \mid i \in I\right)$ whose i-th component is d and all the other components are 0.

See also Ernest T. Moynahan [4].
Next we verify the following result:
Theorem 2. Let $D_{i}, i \in I$, be complete distributive lattices satisfying condition (J). Let Θ be a complete congruence relation on $\Pi^{*}\left(D_{i} \mid i \in I\right)$. If there exist $i \in I$ and $d \in D_{i}$ with $d<1_{i}$ such that, for all $d \leq c<1_{i}$,

$$
\begin{equation*}
\langle\ldots, d, \ldots, 0, \ldots\rangle \equiv\langle\ldots, c, \ldots, 0, \ldots\rangle \tag{1}
\end{equation*}
$$

then $\Theta=\iota$.

Proof. Since

$$
\begin{equation*}
\langle\ldots, d, \ldots, 0, \ldots\rangle \equiv\langle\ldots, c, \ldots, 0, \ldots\rangle \tag{2}
\end{equation*}
$$

and Θ is a complete congruence relation, it follows from condition (J) that

$$
\begin{equation*}
\langle\ldots, d, \ldots, 0, \ldots\rangle \equiv \bigvee(\langle\ldots, c, \ldots, 0, \ldots\rangle \mid d \leq c<1) \tag{3}
\end{equation*}
$$

Date: March 15, 2006.

Figure 1

Let $j \in I, j \neq i$, and let $a \in D_{j}^{-}$. Meeting both sides of the congruence (2) with $\langle\ldots, a, \ldots, 0, \ldots\rangle$, we obtain that

$$
\begin{equation*}
0=\langle\ldots, a, \ldots, 0, \ldots\rangle \tag{4}
\end{equation*}
$$

Using the completeness of Θ and (4), we get:

$$
0 \equiv \bigvee\left(\langle\ldots, a, \ldots, 0, \ldots\rangle \mid a \in D_{j}^{-}\right)=1
$$

hence $\Theta=\iota$.

References

[1] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December, 1990.
[2] George A. Menuhin, Universal algebra. D. Van Nostrand, Princeton, 1968.
[3] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[4] Ernest T. Moynahan, Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1957), 417-434.

Computer Science Department, University of Winnebago, Winnebago, MN 53714

4.2 An article template

In this section, you create an article template. To start a new article, open the template and start writing!

Make a copy of intrart.tex and give the copy an appropriate name. I named mine gg.tex (it is in the samples folder). Remember the naming rule (page 4): The name should have no spaces, no special characters, and end with .tex. So the name my template.tex is not good, but MyTemplate.tex is fine.

4.2.1 Editing the top matter

Edit the top matter to contain the relevant information, e.g., title and address, for your template. Here are some simple rules to follow.

Rule ■ Top matter

1. \thanks places an unmarked footnote at the bottom of the first page, for instance to acknowledge research support. If it is not needed, comment it out.
2. Separate the lines of your address with $\backslash \backslash$. Do not put a $\backslash \backslash$ at the end of the last line.
3. \date\{\today\} typesets today's date. If you do not want any date to appear, comment out the \date command. For a specific date, such as March 15, 2006, type \date\{March 15, 2006$\}.$
4. The \title command is the only required command. The others are optional.

Actually, if you do not give the \maketitle command, even the \title command is optional. On the other hand, if you do give the \maketitle command and omit the \title command, then you get the error message
! Undefined control sequence.
<argument> \shorttitle

1.27 \maketitle

Now delete all the content of the article, leaving you with the skeleton. Here is the edited gg.tex (it is in your samples folder):
.tex\documentclass\{amsart\}\usepackage\{amssymb,latexsym\}\usepackage\{graphicx\}undefined

```
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}
```

\begin\{document\} }

\title\{Title!\}

\author\{George Gr\"\{a\}tzer\}
\address\{Department of Mathematics

University of Manitoba

Winnipeg, MB R3T 2N2

Canada\}

\date\{\today\}
\begin\{abstract\} }
To come!
\end\{abstract\} }
\maketitle

\section\{Introduction\}\label\{S:intro\}

\begin\{thebibliography\}\{9\} }
\end\{thebibliography\} }
\end\{document\} }

I also made a version for a joint article with another author: gg2.tex (see the samples folder). It adds the lines

```
\author{Second author}
\address{line1\\
    line2\\
    line3\\
    line4}
```

before the \date command.
When I start writing an article, I open gg.tex or gg2.tex, save it under a new name, and edit the top matter. Here are two more rules about the top matter to keep in mind:

Rule ■ Top matter (continued)

5. If necessary, break the title into separate lines with $\backslash \backslash$. Do not put a $\backslash \backslash$ at the end of the last line.
6. Multiple authors get separate \author and \address commands.

4.2.2 Sectioning

An article, as a rule, is divided into sections. To start the section Introduction, type

\section\{Introduction\}\label\{S:intro\}

after the \maketitle command. Introduction typesets as the title of the section. I use the convention that S : starts the label for a section, so the label is S :intro (or something similar). The section's number is automatically assigned by ETEX. You can refer to this section number with $\backslash r e f\{S:$ intro $\}:$

In Section~ \backslash ref $\{\mathrm{S}:$ intro $\}$, we introduce
The command \backslash section* produces an unnumbered section.
Sections have subsections, and subsections have subsubsections. The corresponding commands are

\subsection \subsubsection

Their unnumbered variants are

\subsection* \subsubsection*

4.2.3 Invoking proclamations

In the preamble of the article intrart.tex, we defined the theorem, lemma, definition, and notation proclamations. These proclamations define environments.

For example, you type a theorem within a theorem environment. The body of the theorem, that is, the part of the source file that produces the theorem, is typed between the lines
\begin\{theorem\}\label\{T: } x x x \}
and
\end\{theorem\} }
where $\mathrm{T}: x x x$ is the label for the theorem. You should replace $x x x$ with a label that is somewhat descriptive of the contents of your theorem. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ automatically assigns a number to the theorem, and the theorem can be referenced by using a command of the form $\backslash \operatorname{ref}\{\mathrm{T}: x x x\}$.

4.2.4 Inserting references

The works to be listed are placed in the bibliography. Below are typical entries for the most frequently used types of references, an article in a journal, a book, a Ph.D. thesis, and a technical report. For more examples, see the bibliographic template file, bibl.tpl, in the samples folder.
\begin\{thebibliography\}\{9\} }
\bibitem\{sF90\}
Soo-Key Foo,
\emph\{Lattice Constructions\},
Ph.D. thesis,
University of Winnebago, Winnebago, MN, December, 1990.
\bibitem\{gM68\}
George ${ }^{\sim}$ A. Menuhin, \emph\{Universal algebra\}. D. ${ }^{\sim}$ Van Nostrand, Princeton, 1968.
\bibitem\{eM57\}
Ernest~T. Moynahan,
\emph\{On a problem of M. Stone\},
Acta Math. Acad. Sci. Hungar. \textbf\{8\} (1957), 455-460.
\bibitem\{eM57a\}
Ernest~T. Moynahan, \emph\{Ideals and congruence relations in lattices.\} II, Magyar Tud. Akad. Mat. Fiz. Oszt. K\"\{o\}zl. \textbf\{9\} (1957), 417--434.
\end\{thebibliography\} }
Each item listed in the bibliography can be referenced in the body of the article. You reference with the \cite command. The argument is the argument of the \bibitem command. So to reference Menuhin's article, type
\cite\{gM68\}
which typesets as [2] since Menuhin's article is the second in the list. So

Γ

this result was first published in [2]
is typed as
this result was first published in \backslash (cite\{gM68\}

How you write each label is up to you, subject only to the rule in Section 10.4.2, provided the labels are unique. I use the convention that the label for a \backslash bibitem consists of the initials of the author and the year of publication. For example, a publication by Andrew B. Reich in 1987 would have the label aR87 (a second publication by that author from that year would be aR87a). For joint publications, the label consists of the initials of the authors and the year of publication. For example, a publication by John Bradford and Andrew B. Reich in 1987 would have the label BR87.

You have to arrange the references in your document's thebibliography environment in the order you wish to see them. $\mathrm{ETEX}_{\mathrm{E}}$ only takes care of the numbering and the citations in the text.

4.3 On using ${ }^{L T} T_{E} X$

Now that you are ready to type your first article, we give you some pointers on using ${ }^{\mathrm{L} T} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$.

4.3.1 $\quad L^{4} T_{E} X$ error messages

You probably make a number of mistakes in your first article. These mistakes fall into the following categories:

1. Typographical errors, which $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ blindly typesets
2. Errors in mathematical formulas or in the formatting of the text
3. Errors in your instructions to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, that is, in commands and environments

Typographical errors can be corrected by viewing and spell checking the typeset article, finding the errors, and then editing the source file.

Mistakes in the second and third categories probably trigger errors during the typesetting process, such as the math errors in Section 3.2. Some of these mistakes may have to be corrected before your article can be completely typeset.

We now look at some examples of the third class of errors by deliberately introducing a number of mistakes into the source file of the article intrart. tex (in your samples folder, source file on pages 35-41, and shown typeset on pages 42-43), and examining the error messages that occur.

When $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ displays a ? prompt, you can either try to continue typesetting the document by pressing Return, or type x to stop typesetting immediately. See Section D. 4 for other options.

Experiment 1 In intrart.tex, go to line 20 by using your editor's Go to Line command and remove the closing brace so that it reads

[^2]}

When you typeset intrart. tex, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ reports a problem:

```
Runaway argument?
{abstract In this note, we prove that there exist
\emph {complete-sim\ETC.
! Paragraph ended before \begin was complete.
<to be read again>
    \par
```

1.26

Line 26 of the file is the line after \end\{abstract\}. The error message informs you } that the name of the environment that ends before line 26 is not completed before the end of the paragraph. Press Return to tell $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to typeset the remainder of the article, leaving out the abstract.

Runaway argument? is an error message that comes up often. It usually means that the argument of a command is either longer than expected or it contains material that the argument cannot accept. Most often a closing brace solves the problem, as in the experiment.

Experiment 2 Now correct line 20, then go to line 25 and change it from

```
\end{abstract}
```

to
\end\{abstrac\} }
and typeset the article again. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ informs you of another error:

```
! LaTeX Error: \begin{abstract} on input line 20
```

ended by \end\{abstrac\}. }
1.25 \end\{abstrac\} }

This is perfect. $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ correctly analyzes the problem and tells you where to make the change.

You may continue typesetting the article by pressing Return. ${ }^{\mathrm{ET}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ then gives you the message:

```
! Missing } inserted.
<inserted text>
```

 \}
 1.25 \end\{abstrac\} }

The missing \} inserted is the "special brace" \end\{abstract\} (more about this in } Section 5.3.2). Press Return. $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ recovers from this error and the article is typeset correctly.

Experiment 3 Instead of correcting the error in line 25, comment it out with

```
% \end{abstrac}
```

and also comment out the four lines of the figure environment using block comment. Introduce an additional error in line 96 . This line reads

```
and $\Theta$ is a complete congruence relation,
```

Change \Theta to \Teta:

```
and $\Teta$ is a complete congruence relation,
```

Now, when you typeset the article, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ reports

```
! Undefined control sequence.
<recently read>\Teta
```

1.96 and $\$ \backslash$ Teta
\$ is a complete congruence relation,
Pressing Return results in the message

```
! LaTeX Error: \begin{abstract} on input line 20
ended by \end{document}.
```

Type H <return> for immediate help.
1.150 \end\{document\} }

These two mistakes are easy to identify: \Teta is a misspelling of \Theta, and since \end\{abstract\} is missing, } \mathrm { ET } _ { \mathrm { E } } \mathrm { X } is trying to match
\begin\{abstract\} }
with
\end\{document\} }
Now undo the changes you made to lines 25 and 96 . Uncomment the figure.
Experiment 4 In line 42, delete the closing brace of the \label command:

```
\begin{definition}\label{D:P*
```

This results in a message for line 54 , the blank line following the paragraph, that
! Paragraph ended before \label was complete.

This is easy to understand. You cannot begin a new paragraph within the argument of a \label command.

Undo the change to line 42.
Experiment 5 Add a blank line following line 58:

```
\langle \dots, 0, \dots, d, \dots, 0, \dots \rangle
```

This change results in the message

```
! Missing $ inserted.
<inserted text>
```

 \$
 1.59

There can be no blank lines within a displayed math environment. ${ }^{\mathrm{ET}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ catches the mistake, but the message itself is misleading. Pressing Return does not help; you cannot recover from the error. Delete the blank line.

Experiment 6 Add a $\$$ somewhere in line 58 (such errors often occur when cutting and pasting formulas):

```
\langle $\dots, 0, \dots, d, \dots, 0, \dots \rangle
```

You get the message:

```
! Display math should end with $$.
<to be read again>
    \protect
1.58 \langle $\dots
    , 0, \dots, d, \dots, 0, \dots \rangle
```

Maybe this could be more to the point?
Error messages from $\mathrm{ATEX}_{\mathrm{E}}$ are not always helpful, but there is always some information that can be gleaned from them. Try to identify the structure, that is, the command or environment, that causes the error-read the section of this book that describes that command or environment. This should help you correct the error. Keep in mind that the error could be quite far from the line $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ indicates, but it is always on or before that line in the source file.

If you have difficulty isolating a problem, block comment all but the paragraph you suspect might have problems. If necessary, split a large paragraph into smaller pieces.

Tip Typeset often.

To some extent, you can avoid having to isolate problems by following this tip. For instance, if I were to typeset First Steps into $L^{A} T_{E} X$ [29], with the closing brace of the first \caption command on line 480 of the source file missing, I would get the error message
! Text line contains an invalid character.
1.1227 ...pletely irreducible^^?
where the reference is to line 1227 , about 700 lines removed from the actual error. However, if the only thing I did before typesetting was to insert that figure with its incorrect caption command, at least I would know where to look for errors. If you make a dozen corrections and then typeset, you may not know where to start.

4.3.2 Logical and visual design

The typeset version of intrart.tex (pp. 42-43) looks impressive. To produce such articles, you need to understand that there are two aspects to article design: visual and logical.

As an example, let us look at a theorem from intrart.tex (see the typeset form of the theorem on page 43). You tell $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ that you want to state a theorem by using a theorem environment:

```
\begin{theorem}\label{T:P*}
Let $D_{i}$, $i \in I$, be complete distributive
lattices satisfying condition~\textup{(J)}.
Let $\Theta$ be a complete congruence relation on
$\Pi^{*} ( D_{i} \mid i \in I )$.
If there exist $i \in I$ and $d \in D_{i}$ with
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$,
\begin{equation}\label{E:cong1}
    \langle \dots, d, \dots, 0, \dots \rangle \equiv
    \langle \dots, c, \dots, 0, \dots \rangle
    \pod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
```

The logical part of the design is choosing to define a theorem by placing material inside a theorem environment. For the visual design, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ makes hundreds of decisions. Could you have specified all of the spacing, font size changes, centering, numbering, and so on? Maybe, but would you want to? And would you want to repeat that process for every theorem in your document?

Even if you did, you would have spent a great deal of time and energy on the visual design of the theorem rather than on the logical design of your article. The idea
behind ${ }^{A} T_{E} \mathrm{X}$ is that you should concentrate on what you have to say and let ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ take care of the visual design.

This approach allows you to easily alter the visual design by changing the document class (or its options, see Sections 11.5, 12.1.2, and 18.1). Section 11.1 provides some examples. If you code the visual design into the article-hard coding it, as a programmer would say-such changes are much harder to accomplish, for you and for the journal publishing the article.

4.4 Converting an article to a presentation

To produce a document in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ for use as a presentation, you have to output it as a PDF file. You make your presentation using a PDF viewer such as Adobe Reader or print the pages of the PDF file on transparencies and use a projector.

So a presentation is a PDF file. To display the presentation, connect your computer to a projector. Open the PDF file in Adobe Reader, put it in full screen mode. Then project the presentation a page at a time by pressing the space bar or the forward and back arrow keys.

In $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, you use a presentation package-really, a document class-to prepare such a PDF file. We deal with presentations in detail in Chapter 14, but as a quick introduction, we convert intrart.tex into a presentation.

For the conversion, we use the presentation package FoilTEX, while in Chapter 14 we discuss the beamer package. To use the FoilTEX package, we have to learn only one new command, \foilhead.

Open intrart.tex, save it as intropres.tex in the work folder. We introduce some changes to the document to prepare it for the conversion. Once you are satisfied with the changes made, the tex file created for FoilT T_{E} is typeset so as to produce the PDF file. For WinEdt, click on the PDF TeXify icon. For TeXShop, just click on Typeset. For other $\mathrm{T}_{\mathrm{E}} X$ installations, check your user manual on how to create a PDF output.

4.4.1 Preliminary changes

Make the following changes in the preamble, top matter, and abstract.

1. Change the first line to \% Introductory presentation:intropres.tex
2. Change the documentclass to foils.
3. Add the line
epackage\{amsmath\}afterthedocumentclassline.WehavetodothisbecauseFoilTEXdoesnotautomaticallyloadtheAMSmathpackage.undefined
4. Delete the definitions of theorem, lemma, and definition. FoilTEX redefines these.
5. Copy the address into the \author command:
```
\author{George~A. Menuhin\\
    Computer Science Department\\
    University of Winnebago\\
    Winnebago, MN 53714}
```

and delete the \address command. This may seem strange, but it is necessary because FoilteX is based on a legacy document class that does not have an \address command (see Chapter 12).
6. Move the abstract after the \maketitle command, as was customary in legacy document classes.
7. Add the [scale=2] option to the
FoilTEX uses fonts in 20 point size, twice the usual size. So it is appropriate that we scale up the illustration to 200%.

So the new version is
roductorypresentation:intropres.tex\documentclass\{foils\}\usepackage\{amsmath\}\usepackage\{amssymb,latexsym\}\usepackage\{graphicx\}\begin\{document\}}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

\title\{A construction of complete-simple

distributive lattices\}
\author\{George~A. Menuhin

Computer Science Department $\backslash \backslash$
University of Winnebago

Winnebago, MN 53714\}

\date\{March 15, 2006\}
\maketitle
\begin\{abstract\} }
In this presentation, we prove that there exist

```
    \emph{complete-simple distributive lattices,}
    that is, complete distributive lattices
    with only two complete congruences.
\end{abstract}
```


Declarations in the body

In your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ editor, perform four search and replace operations in the body of the article. Change all of the following:

1. \{theorem\} to \{Theorem\}
2. $\{$ lemma\} to \{Lemma\}
3. \{definition\} to \{Definition\}
4. \{proof \} to \{Proof\}

FoilTEX defines and uses the capitalized versions.

Sectioning

Comment out all the \section commands. FoilTEX uses the \backslash foilhead command to break the material into pages and also as a substitute for sectioning.

4.4.2 Making the pages

We cut the presentation into pages (transparencies or foils) by inserting as many page breaking commands of FoilTEX, \foilhead\{\}, as seems appropriate. The argument of the command becomes the "title" for the page. If the argument is empty, the page has no title.

Add the \foilhead\{The result\} command after the abstract. This ends the title page and adds the title The result to the next page.

See the intropres.tex document for all the other \backslash foilhead $\}$ commands we have added.

4.4.3 Fine tuning

We have eliminated the equation numbering, because it would make the equations too wide. Also, in a presentation, references to another page are not recommended. We made some additional changes to accommodate that we have fewer characters per line. Compare the documents intrart.tex and intropres.tex to see all the changes. Note how in the PDF file the fonts are automatically changed to sans serif, because sans serif text is easier to read when projected. The font size is 20 pt , twice the size of the font in the article.

Of course, intropres.tex is not the most elegant presentation. But I hope it helps you to make your first presentation. On pages 57 and 58, we show the first two pages of this presentation.

There are, of course, a number of useful commands in FoilT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ in addition to the one we used, \foilhead. We did not even do justice to this one command. It has an optional argument to enlarge or shrink the space between the header and the body of the foil. So
\foilhead[-.5in]\{A diagram\}
shrinks that space by half an inch. This is especially useful with large diagrams.
For numerous other features of FoilTEX, see the user manual [33].

A construction of complete-simple distributive lattices

George A. Menuhin
Computer Science Department
University of Winnebago
Winnebago, MN 53714

March 15, 2006

Abstract

In this presentation, we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices with only two complete congruences.

- Typeset by FoilTEX -

The result

In this presentation, we prove the following result:
Theorem 1. There exists an infinite complete distributive lattice K with only the two trivial complete congruence relations.

CHAPTER

In Chapter 2, we briefly discussed how to type text in a document. Now we take up this topic more fully.

This chapter starts with a discussion of the keyboard in Section 5.1 and continues with the rules for spaces in Section 5.2. We cover a very important topic that must precede any in-depth discussion of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, how to control $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ with commands and environments, in Section 5.3.

A document may contain symbols that cannot be found on your keyboard. In Section 5.4 , we show how to get these symbols in our typeset documents by using commands.

Some other characters are defined by $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ as command characters. For example, the $\%$ character plays a special role in the source document. In Section 5.5.1, you will see how $\%$ is used to comment out lines. In Section 5.5.2, we introduce the command for footnotes.

In Section 5.6, we discuss the commands (and environments) for changing fonts, their shapes and sizes. In Section 5.7, you learn about lines, paragraphs, and pages. The judicious use of horizontal and vertical spacing is an important part of document
formatting, and also the topic of Section 5.8. In Section 5.9, you learn how to typeset text in a "box", which behaves as if it were a single large character.

To help the discussion along, we shall use the terms text mode and math mode to distinguish between typesetting text and math.

5.1 The keyboard

Most of the keys on your computer's keyboard produce characters, while others are function or modifier keys.

5.1.1 Basic keys

The basic keys are grouped as follows:
Letters The 52 letter keys:
a b c ... z
A B C ... Z

Digits The ten digits:
$12 \ldots 9$

Old-style digits are available with the \oldstylenums command. The next line shows the default digits followed by the old style digits:
$1234567890 \quad 1234567890$
typed as
1234567890 \quad \oldstylenums\{1234567890\}
Punctuation There are nine punctuation marks:

The first six are the usual punctuation marks. The ' is the left single quotealso known as the grave accent-while' doubles as the right single quote and apostrophe (see Section 5.4.1). The - key is the dash or hyphen (see Sections 5.4.2 and 5.4.9).

Parentheses There are four:
() []
(and) are parentheses; [and] are called (square) brackets.

Math symbols Seven math symbols correspond to keys. The math symbols are:

* $+=-<>/$

The last four characters have a role also in text mode:

- The minus sign - corresponds to the hyphen key, - (see Section 7.4.1).
- The math symbols < and > correspond to the keys < and >; use them only in math mode.

Note that there is also a version of colon (:) for math formulas (see Sections 8.1 and B.2).

Space keys Pressing the space bar gives the space character. Pressing the tab key gives the tab character. When typesetting the source file, $\mathrm{IATEX}_{\mathrm{E}}$ does not distinguish between these two. Pressing the Return key gives the end-of-line character.

These keys produce invisible characters that are normally not displayed on your monitor by the text editor. Different computer systems have different end-ofline characters, which may cause some problems when transferring files from one system to another. A good text editor translates end-of-line characters automatically or on demand. Section 5.2.1 explains how $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ handles the invisible characters.

When explaining some rules of ${ }^{\mathrm{ET}} \mathrm{T} X$, sometimes it is important to show if a space is required. In such cases, I use the symbol \sqcup to indicate a space, for instance, in $_{\sqcup} u t$ and \backslash_{\sqcup}.

The tilde ${ }^{\sim}$ produces a nonbreakable space or tie (see Section 5.4.3 and the footnote on page 11).

5.1.2 Special keys

There are 13 special keys on the keyboard:

$$
\text { \# \$ \% \& ~ _ } \backslash\} \text { @ " । }
$$

They are mostly used to give instructions to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and some are used in math mode (see Chapter 7), and some in BibTEX (see Chapter 16). See Section 5.4.4 on how to print these characters in text. Only @ requires no special command, type @ to print @.

5.1.3 Prohibited keys

Keys other than those discussed in Sections 5.1.1 and 5.1.2 are prohibited! Specifically, do not use the computer's modifier keys-Control, Alt, Escape, and others-to produce special characters, such as accented characters. ${ }^{\mathrm{AT}} \mathrm{E} \mathrm{X}$ will either reject or misunderstand them.

Prohibited characters may not cause problems in some newer ${ }^{{ }^{A}} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ implementations. They may just print $Ł$ if your source file has $£$, and ignore the invisible invalid characters. However, for portability reasons, you should avoid using prohibited characters.

The babel package provides support for using some modifier keys (see Appendix G).

Tip If there is a prohibited character in your document, you may receive an error message such as

```
! Text line contains an invalid character.
l.222 completely irreducible^^?
~`?
```

Delete and retype the offending word or line until the error goes away.

5.2 Words, sentences, and paragraphs

Text consists of words, sentences, and paragraphs. In text, words are separated by one or more spaces, which may include a single end-of-line character (see the rule, Spacing in text), or by parentheses and punctuation marks. A group of words terminated by a period, exclamation point, or question mark forms a sentence (not all periods terminate a sentence, see the discussion in Section 5.2.2). A group of sentences terminated by one or more blank lines constitutes a paragraph.

5.2.1 Spacing rules

Here are the most important $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ rules about spaces in text in the source file.

Rule ■ Spacing in text

1. Two or more spaces in text are the same as one.
2. A tab or end-of-line character is the same as a space.
3. A blank line, that is, two end-of-line characters separated only by spaces and tabs, indicates the end of a paragraph. The \backslash par command is equivalent.
4. Spaces at the beginning of a line are ignored.

Rules 1 and 2 make cutting and pasting text less error-prone. In your source file, you do not have to worry about the line length or the number of spaces separating words
or sentences, as long as there is at least one space or end-of-line character separating any two words. Thus

```
You do not have to worry
about the number of spaces
separating words, as long as there
is at least one space or end-of-line character
separating any two words.
```

produces the same typeset text as

You do not have to worry about the number of spaces separating words, as long as there is at least one space or end-of-line character separating any two words.

However,

```
the number of spaces separating words,
as long
```

and
the number of spaces separating words , as long
produce different results:

\ulcorner

the number of spaces separating words, as long the number of spaces separating words, as long

Notice the space between "words" and the comma in the second line. That space was produced by the end-of-line character in accordance with Rule 2.

It is very important to maintain the readability of your source file. ETEX may not care about the number of spaces or line length, but you, your coauthor, or your editor might.

Rule 3 contradicts Rules 1 and 2, consider it an exception. Sometimes-especially when defining commands and environments (see Sections 15.1 and 15.2)—it is more convenient to indicate the end of a paragraph with \backslash par.

When e-mailing a source file, e-mail clients tend to break longer lines into shorter ones. Because of the space rules, this does not effect the typeset version most of the time.

5.2.2 Periods

LTEX places a certain size space between words-the interword space-and a somewhat larger space between sentences-the intersentence space. To know which space to use, ETEX must decide whether or not a period indicates the end of a sentence.

Rule 1 ■ Period

To $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$, a period after a capital letter, for instance, A. or caT., signifies an abbreviation or an initial. Generally, every other period signifies the end of a sentence.

This rule works most of the time. When it fails-for instance, twice with e.g.-you need to specify the type of space you want, using the following two rules.

Rule 2 ■ Period

If an abbreviation does not end with a capital letter, for instance, etc., and it is not the last word in the sentence, then follow the period by an interword space ($\backslash \sqcup$) or a tie (${ }^{\sim}$), if appropriate (see Section 5.4.3).

Recall that $_{\sqcup}$ provides an interword space.
The result was first published, in a first approximation, in the Combin. \ Journal. The result was first published, in a first approximation, in the Combin. Journal.
prints as

The result was first published, in a first approximation, in the Combin. Journal. The result was first published, in a first approximation, in the Combin. Journal. L

Notice that Combin. in the first line is followed by a regular interword space. The intersentence space following Combin. in the second line is a little wider.

A tie (or nonbreakable space)—see also Section 5.4.3-is more appropriate than $_{\sqcup}$ in phrases such as Prof. Smith, typed as Prof. ${ }^{\sim}$ Smith, and pp. 271-292, typed as pp. ~271--292.

Tip The thebibliography environment handles periods properly. You do not have to mark periods for abbreviations (in the form.\backslash) in the name of a journal, so

Acta Math. Acad. Sci. Hungar.
is correct.

Rule 3 ■ Period

If a capital letter is followed by a period and is at the end of a sentence, precede the period with \@.

For example,
(1) follows from condition ${ }^{\sim} H \backslash$. We can proceed $\backslash \backslash$
(1) follows from condition ${ }^{\sim} H$. We can proceed
prints:
Γ
(1) follows from condition H. We can proceed
(1) follows from condition H. We can proceed

Notice that there is not enough space after H . in the second line.
Most typographers agree on the following rule (see, e.g., Robert Bringhurst's The Elements of Typographic Style [8], p. 30):

Rule 4 ■ Period

Add no space or a thin space (\backslash,) within strings of initials and be consistent.

So W.H. Lampstone with no space or W.H. Lampstone with thin space is preferred over W. H. Lampstone. My personal choice is W. H. Lampstone with thin space.

To make all intersentence spaces equal to the interword space-as required in French typography-you can use the command
\frenchspacing
To switch back to using spaces of different sizes, give the command
\nonfrenchspacing

5.3 Commanding ${ }^{E A} T_{E} X$

How do you command $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ to do something special for you, such as starting a new line, changing emphasis, or displaying the next theorem? You use commands and special pairs of commands called environments, both briefly introduced at the start of Chapter 2.

Most, but not all, commands have arguments, which are usually fairly brief. Environments have contents, the text between the \begin and \end commands. The contents of an environment can be several paragraphs long.

5.3.1 Commands and environments

The \emph $\{$ text $\}$ command instructs LETEX to emphasize its argument, text. The $\backslash \& ~ c o m m a n d ~ h a s ~ n o ~ a r g u m e n t . ~ I t ~ i n s t r u c t s ~ I A T E X ~ t o ~ t y p e s e t ~ \& ~(s e e ~ S e c t i o n ~ 5.4 .4) . ~$

The flushright environment instructs ATEX to right justify the content, the text between the two commands
\begin\{flushright\} }
\end\{flushright\} }
The content of the document environment is the body of the article (see Section 4.1) and the content of the abstract environment is the abstract.

Rule ■ Environments

An environment starts with the command
\begin\{name\} }
and ends with
\end\{name\} }
Between these two lines is the content of the environment, affected by the definition of the environment.

Rule ■ Commands

A ETEX command starts with a backslash, \backslash, and is followed by the command name. The name of a command is either a single non-alphabetic character other than a tab or end-of-line character or a string of letters, that is, one or more letters.

So \# and ' are valid command names. The corresponding commands
\# and \' are used in Sections 5.4.4 and 5.4.7, respectively. input and date are also valid command names. However, input3, in\#ut, and in $\quad \cup$ ut are not valid names because 3 , \#, and \sqcup should not occur in a multicharacter command name. Note that \sqcup is a command name, the command \backslash_{\sqcup} produces a blank.

ETEX has a few commands, for instance, $\$$ (see Section 7.1) that do not follow this naming scheme, that is, they are not of the form \backslash name. See also Section 15.1.8 for special commands with special termination rules.

Rule ■ Command termination

$\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ finds the end of a command name as follows:

- If the first character of the name is not a letter, the name is the first character.
- If the first character of the name is a letter, the command name is terminated by the first nonletter.

If the command name is a string of letters, and is terminated by a space, then ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ discards all spaces following the command name.

While input3 is an invalid name, \input3 is not an incorrect command. It is the \input command followed by the character 3, which is either part of the text following the command or the argument of the command.

LETEX also allows some command names to be modified with *. Such commands are referred to as $*$-ed commands. Many commands have $*$-ed variants. \hspace* is an often-used $*$-ed command (see Section 5.8.1).

Rule $■$ Command and environment names

Command and environment names are case sensitive. \ShowLabels is not the same as \showlabels.

Rule ■ Arguments
 Arguments are enclosed in braces, \{ \}.
 Optional arguments are enclosed in brackets, [].

Commands may have arguments, typed in braces immediately after the command. The argument(s) are used in processing the command. Accents provide very simple examples. For instance, \'\{o\}-which produces ó-consists of the command \' and the argument o (see Section 5.4.7). In \bibliography\{article1\}, the command is \bibliography and the argument is article1 (see Section 16.2.2).

Sometimes, if the argument is a single character, the braces can be dropped: \'o also typesets as ó.

Some environments also have arguments. For example, the alignat environment (see Section 9.5.4) is delimited by the commands
\begin\{alignat\}\{2\} }
and
\end\{alignat\} }

The argument, 2 , is the number of columns-it could be any number $1,2, \ldots$ A command or environment may have more than one argument. The \frac command (see Section 7.4.1) has two, $\$ \backslash f r a c\{1\}\{2\} \$$ typesets as $\frac{1}{2}$. The user-defined command \con has three (see Section 15.1.2).

Some commands and environments have one or more optional arguments, that is, arguments that may or may not be present. The \sqrt command (see Section 7.4.5) has an optional argument for specifying roots other than the square root. To get $\sqrt[3]{25}$, type \sqrt[3]\{25\}. The \documentclass command has an argument, the name of a document class, and an optional argument, a list of options (see Section 10.2), for instance,
\documentclass[12pt,draft,leqno]\{amsart\}

Tip If you get an error when using a command, check that:

1. The command is spelled correctly, including the use of uppercase and lowercase letters.
2. You have specified all required arguments in braces.
3. Any optional argument is in brackets, not braces or parentheses.
4. The command is properly terminated.
5. The package providing the command is loaded with the gecommand.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Most errors in the use of commands are caused by breaking the termination rule. We can illustrate some of these errors with the \today command, which produces today's date. You have already seen this command in Section 2.4 (see also Section 5.4.8). The correct usage is
\today \backslash is the day
or
\today\{\} is the day
which both typeset as

July 19, 2006 is the day

In the first case, \today was terminated by $_{\sqcup}$, the command that produces an interword space. In the second case, it was terminated by the empty group $\}$.

If there is no space after the \today command, as in
\todayis \quad the ${ }_{\llcorner }$day
you get the error message
! Undefined control sequence.
1.3 \todayis the day
${ }^{\text {ETEX }} \mathrm{X}$ thinks that \backslash todayis is the command, and, of course, does not recognize it.
If you type one or more spaces after \today:
\todayபuis \quad the ${ }_{\bullet}$ day
LeTEX interprets the two spaces as a single space by the first space rule (see page 64), and uses that one space to delimit \today from the text that follows it. So IATEX produces

July 19, 2006is the day

Section 15.1.8 discusses how best to avoid such errors.

Tip If a command-or environment-can have an optional argument and

- none is given, and
- the text following the command starts with [,
then type this as $\{[\}$.

This may happen, for instance, with the command - (see page 123). To get an example for an environment, see Section 9.6 .1 for subsidiary math environments and page 229 for the alignment options. See what happens if no option is given but the math starts, say, with [x].

5.3.2 Scope

A command issued inside a pair of braces \{ \} has no effect beyond the right brace, except for the seldom occurring global commands (see Section 5.3.3). You can have any number of pairs of braces:
\{ ... \{ ... \{ ... \} ... \} ... \}
The innermost pair containing a command is the scope of that command. The command has no effect outside its scope. We can illustrate this concept using the $\backslash \mathrm{bfseries}$ command that switches the font to boldface:

```
{some text \bfseries bold text} no more bold
```


typesets as


```
    some text bold text no more bold
```

The commands \begin\{name\} and \end\{name\} bracketing an environment act } also as a pair of braces. In particular, $\$, \backslash[$, and $\backslash]$ are special braces.

Rule ■ Braces

1. Braces must be balanced: An opening brace has to be closed, and a closing brace must have a matching opening brace.
2. Pairs of braces cannot overlap.

Violating the first brace rule generates warnings and error messages. If there is one more opening brace than closing brace, the document typesets, but you get a warning:

```
(\end occurred inside a group at level 1)
```

For two or more unmatched opening braces, you are warned that \end occurred inside a group at level 2, and so on. There is a tendency to disregard such warnings since your article is already typeset and the error may be difficult to find. However, such errors may have strange consequences. At one point in the writing of my second $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ book, there were two extra opening braces in Chapter 2. As a result, the title of Chapter 7 was placed on a page by itself! So it is best not to disregard such warnings.

If you have one unmatched closing brace, you get an error message such as

```
! Too many }'s
```

If special braces, say, \begin\{name\} and \end\{name\}, do not balance, you get an } error message such as those discussed in Section 4.3.1:

```
! LaTeX Error: \begin{name} on input line 21
```

ended by \end\{document\}. }
or

```
! LaTeX Error: \begin{document} ended by \end{name}.
```

To illustrate the second rule, here are two simple examples of overlapping braces.

Example 1

```
{\bfseries some text
\begin{lemma}
```

```
    more text} final text
\end{lemma}
```


Example 2

\{some \backslash bfseries text, then math: $\$ \backslash$ sqrt 2$\}$ \}, \backslash sqrt\{3\}\$
In Example 1, the scope of \bfseries overlaps the braces \begin\{lemma\} and } \end\{lemma\}, whereas in Example 2, the scope of \bfseries overlaps the special } braces $\$$ and $\$$. Example 1 is easy to correct:

```
{\bfseries some text}
\begin{lemma}
    {\bfseries more text}
    final text
\end{lemma}
```

Example 2 may be corrected as follows:

```
{some \bfseries text, then math:} $\sqrt{2}, \sqrt{3}$
```

Actually, $\sqrt{2}$ does not even have a bold version (see Section 8.3.3).
If the braces do overlap and they are of the same kind, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ simply misunderstands the instructions. The closing brace of the first pair is regarded as the closing brace of the second pair, an error that may be difficult to detect. ${ }^{\mathrm{LA}} \mathrm{E} X$ can help if special braces overlap. Typesetting Example 1 gives the error message

```
! Extra }, or forgotten \endgroup.
1.7 more text }
    final text
```


5.3.3 Types of commands

It may be useful at this point to note that commands can be of various types.
Some commands have arguments, and some do not. Some commands effect change only in their arguments, while some commands declare a change. For instance, \textbf\{This is bold\} typesets the phrase This is bold in bold type: This is bold and has no effect on the text following the argument of the command. On the other hand, the command \backslash bfseries declares that the text that follows should be bold. This command has no argument. I call a command that declares change a command declaration. So $\backslash \mathrm{bf}$ series is a command declaration, while \textbf is not. As a rule, command declarations are commands without arguments.

Commands with arguments are called long if their argument(s) can contain a blank line or a \par command; otherwise they are short. For example, \textbf is a short
command. So are all the top matter commands discussed in Section 11.2. The \backslash parbox command, discussed in Section 5.9.4, is long.

Finally, as discussed in Section 5.3.2, the effect of a command remains within its scope. This is true only of local commands. There are also some global commands, such as the \setcounter command described in Section 15.5.1.

Fragile commands

As a rule, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ reads a paragraph of the source file, typesets it, and then goes on to the next paragraph (see Section D.5). Some information from the source file, however, is separately stored for later use.

Examples include the title of an article, which is reused as a running head (Section 11.2.1); titles of parts, sections, subsections, and other sectioning commands, which are used in the table of contents (Sections 18.2 and 10.4.1); footnotes (Section 5.5.2); table and figure captions (Section 10.4.3), which are used in lists of tables and figures (Section 10.4.3); and index entries (Chapter 17).

These are movable arguments, and certain commands embedded in them must be protected from damage while being moved. LETEX commands that need such protection are called fragile. The inline math delimiter commands (introduced on page 18)
(and \backslash) are fragile, while $\$$ is not.

In a movable argument, fragile commands must be protected with a \protect command. Thus

The function $\backslash\left(f\left(x^{\wedge}\{2\}\right) \backslash\right)$
is not an appropriate section title, but
The function \backslash protect $\backslash\left(\mathrm{f}\left(\mathrm{x}^{\wedge}\{2\}\right)\right.$ protect $\left.\backslash\right)$
is. So is
The function $\$ \mathrm{f}\left(\mathrm{x}^{\wedge}\{2\}\right) \$$
To be on the safe side, you should protect every command that might cause problems in a movable argument. Section 18.2 shows an example of what happens if a fragile command is not protected. Alternatively, use commands declared with
\DeclareRobustCommand
This command works the same way as \newcommand but the command defined is robust, that is, not fragile.

5.4 Symbols not on the keyboard

A typeset document may contain symbols that cannot be typed. Some of these symbols may even be available on the keyboard but you are prohibited from using them (see

Section 5.1.3). In this section, we discuss the commands that typeset some of these symbols in text.

5.4.1 Quotation marks

To produce single and double quotes, as in

```
\Gamma
```

'subdirectly irreducible' and "subdirectly irreducible" L
type
'subdirectly irreducible' and 'subdirectly irreducible"'
Here, ' is the left single quote and ' is the right single quote. Note that the double quote is obtained by pressing the single quote key twice, and not by using the double quote key. If you need single and double quotes together, as in "She replied, 'No.'", separate them with \backslash, (which provides a thin horizontal space):
''She replied, 'No.'
,''

5.4.2 Dashes

Dashes come in three lengths. The shortest dash, called a hyphen, is used to connect words:

Mean-Value Theorem

This phrase is typed with a single dash:
Mean-Value Theorem
A medium-sized dash, called an en dash, is typed as -- and is used

- For number ranges; for instance, the phrase see pages 23-45, is typed as

```
see pages 23--45
```

Note: ~ is a nonbreakable space or tie (see Section 5.4.3).

- In place of a hyphen in a compound adjective when one of the elements of the adjective is an open compound (such as New York) or hyphenated (such as non-English). For instance, the phrase Jonathan Schmidt-Freid adjoint, is typed as

Jonathan Schmidt--Freid adjoint
A long dash-called an em dash-is used to mark a change in thought or to add emphasis to a parenthetical clause, as in this sentence. The two em dashes in the last sentence are typed as follows:

A long dash---called an \emph\{em dash\}---is used

In math mode, a single dash is typeset as the minus sign - (a binary operation) with some spacing on both sides, as in $15-3$ or the "negative" as in -3 (see Sections 5.1.1 and 7.4.1).

Note that there is no space before or after an en dash or em dash.

5.4.3 Ties or nonbreakable spaces

A tie or nonbreakable space (sometimes called a blue space) is an interword space that cannot be broken across lines. For instance, when referencing P. Neukomm in an article, you do not want the initial P. at the end of a line and the surname Neukomm at the beginning of the next line. To prevent such an occurrence, you should type P. ~Neukomm.

If your keyboard does not have ${ }^{\sim}$, use the \nobreakspace command instead, and type P. \nobreakspace Neukomm.

The following examples show some typical uses:
Theorem \simeq ref $\{T:$ main $\}$ in Section \sim ref \{S:intro\}

Donald~E. Knuth
assume that $\$ \mathrm{f}(\mathrm{x}) \$$ is (a) ${ }^{\sim}$ continuous, (b) ${ }^{\sim}$ bounded
the lattice~\$L\$.

In~\$L\$, we find
Of course, if you add too many ties, as in
Peter ${ }^{\sim}$ G. ${ }^{\sim}$ Neukomm\% Incorrect!
LATEX may send you a line too wide error message (see Section 5.7.1).
The tie (${ }^{\sim}$) absorbs spaces, so typing P. $\sqcup \sim{ }^{\sim}$ Neukomm works just as well. This feature is convenient when you add a tie during editing.

5.4.4 Special characters

The characters corresponding to nine of the 13 special keys (see Section 5.1.2) are produced by typing a backslash (\backslash) and then the key, as shown in Table 5.1.

If for some reason you want to typeset a backslash in your document, type the command \, which typesets as \backslash. You might think that you could get a typewriter style backslash by utilizing the \backslash texttt command introduced in Section 2.4

\texttt\{\\}

but this is not the case, \ and \texttt\{\\} produce the same symbol, \backslash, which is different from the typewriter style backslash: \backslash. Look at them side by side: $\backslash \backslash$. For a typewriter style backslash you can use the \backslash bsl command introduced in Section 15.1.1 or the $\backslash t e x t t t\{\backslash$ symbol $\{92\}\}$ command introduced later in this section.

The \mid key is seldom used in text. If you need to typeset the math symbol | in text, type |.

Note that in text, * typesets as *, whereas in a formula it typesets centered as *. To typeset a centered star in text, use the command ∗.
@ typesets as @.
Finally, the " key should never be used in text. See Section 5.4.1 for the proper way to typeset double quotes. Nevertheless, sometimes " may be used to typeset ", as in the computer code segment print ("Hello!"). In BibTEX and MakeIndex, " has special meanings (see Chapters 16 and 17).

Tip Be careful when typing $\backslash\{$ and $\backslash\}$ to typeset the braces $\}$. Typing a brace without its backslash results in unbalanced braces, in violation of the first brace rule in Section 5.3.2.

We illustrated in Section 5.3.2 some consequences of unbalanced braces. You may avoid some of these problems by introducing user-defined commands, as introduced in Section 15.3.

You can also produce special characters with the \symbol command:
\symbol\{94\} typesets as
\backslash symbol $\{126\}$ typesets as ~

Name	Type	Typeset
Ampersand	$\backslash \&$	$\&$
Caret	$\backslash \sim\}$	\ddots
Dollar Sign	$\backslash \$$	$\$$
Left Brace	$\backslash\{$	$\{$
Right Brace	$\backslash\}$	$\}$
Underscore (or Lowline)	$\backslash-$	-
Octothorp	$\backslash \#$	$\#$
Percent	$\backslash \%$	$\%$
Tilde	$\backslash \sim\}$	\sim

Table 5.1: Nine special characters.

	0	1	2	3	4	5	6	7	8	9
x	Γ	Δ	0	Λ	Ξ	п	Σ	Υ	Φ	Ψ
1x	Ω	\uparrow	\downarrow	'	i	i	1	J		
2 x	-	-	-	-	,	B	æ	∞	\varnothing	E
3 x	¢	\emptyset	\sqcup	!	"	\#	\$	\%	\&	,
4 x	()	*	+	,	-	.	/	0	1
5 x	2	3	4	5	6	7	8	9	:	;
6 x	<	$=$	>	?	©	A	B	C	D	E
7 x	F	G	H	I	J	K	L	M	N	0
8 x	P	Q	R	S	T	U	V	W	X	Y
9x	Z	[\backslash]	-	-	'	a	b	c
10x	d	e	f	g	h	i	j	k	1	m
11x	n	\bigcirc	p		r	s	t	u	v	W
12x	x	y	z	\{	1	\}	\sim			

Table 5.2: Font table for the Computer Modern typewriter style font.
\texttt\{\symbol\{92\}\} typesets as \}

The argument of the \backslash symbol command is a number matching the slot of the symbol in the layout (encoding) of the font. The layout for the Computer Modern typewriter style font is shown in Table 5.2.

Alternatively, instead of \texttt\{\symbol\{92\}\}, can use

```
\texttt{\char'\\}
```

Any character x in the font can be accessed by typing the character itself as ' $\backslash \mathrm{x}$. This way you don't have to look up the position of the symbol.

You can obtain similar tables for any font in your IATEX implementation by using the fonttbl.tex file in your samples folder. The table format in this file is used in Section 6.6 as an example of the tabular environment.

For more about font tables, see the nfssfont.tex file, part of the standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution (see Section 12.3) and see also Section 7.5.7 of The LATEX Companion, 2nd edition [46].

5.4.5 Ellipses

The text ellipsis, ..., is produced using the \dots command. Typing three periods produces ... (notice that the spacing is wrong).
\dots is one of several commands that can be used to create ellipses in formulas (see Section 7.4.3).

5.4.6 Ligatures

Certain groups of characters, when typeset, are joined together-such compound characters are called ligatures. There are five ligatures that $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ typesets automatically (if you use the Computer Modern fonts): ff, fi, fl, ffi, and ffl.

If you want to prevent $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ from forming a ligature, separate the characters with the command \textcompwordmark. Compare iff with iff, typed as iff and
if \backslash textcompwordmark f
Enclosing the second character in braces (\{\}) is a crude method of preventing the ligature, as used in Formula 4 of the Formula Gallery (see Section 7.9). This method, in some instances, may interfere with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$'s hyphenation algorithm.

5.4.7 Accents and symbols in text

LATEX provides 15 European accents. Type the command for the accent (\backslash and a character), followed by the letter (in braces) on which you want the accent placed (see Table 5.3).

For example, to get Grätzer György, type
Gr\"\{a\}tzer Gy\"\{o\}rgy
and to get Ö type $\backslash "\{0\}$.
To place an accent on top of an i or a j , you must use the dotless version of i and j . These are obtained by the commands $\backslash i$ and $\backslash j: \backslash \prime\{\backslash i\}$ typesets as í and $\backslash \mathrm{v}\{\backslash j\}$ typesets as \mathfrak{j}. Tables 5.4 and 5.5 list some additional text symbols and European characters available in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ when typing text. Using localized versions of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, you get more accented and combined characters such as the Catalan geminated ell (see Appendix G).

Name	Type	Typeset	Name	Type	Typeset
acute	\'\{o\}	ó	macron	$\backslash=\{0\}$	ō
breve	$\backslash u\{0\}$	ŏ	overdot	$\backslash .\{\mathrm{g}\}$	g
caron/haček	\v\{0\}	ǒ	ring	$\backslash \mathrm{r}\{\mathrm{u}\}$	u
cedilla	\c\{c\}	¢̧	tie	$\backslash t\{00\}$	00
circumflex					
~\{o\}	ô	tilde	$\backslash \sim n\}$	ñ	
dieresis/umlaut	\"\{u\}	ü	underdot	$\backslash d\{m\}$	ṃ
double acute	$\backslash \mathrm{H}\{0\}$	\%	underbar	$\backslash \mathrm{b}\{0\}$	-
grave	\'\{o\}	ò			
dotless i	\i	1	dotless j	\j	J
	\'\{\i\}	í		$\backslash \mathrm{v}\{\backslash j\}$	j

Table 5.3: European accents.

Note that the \textcircled command (in Table 5.5) takes an argument. It seems to work best with a single lowercase character, like (a) or ©. Capitals such as (A) are not very satisfactory. Section 5.9.6 explains how to create the symbol (A).

5.4.8 Logos and dates

\backslash TeX produces $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, $\backslash \mathrm{LaTeX}$ produces $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, and \backslash LaTeXe produces $\mathrm{AA}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$ (the original name of the current version of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$). The $\backslash \mathrm{AmS}$ command produces the logo $\mathcal{A}_{\mathcal{M}} \mathcal{S}$.

Remember to type $\backslash T e X \backslash_{\sqcup}$ or $\backslash T e X\left\}\right.$ if you need a space after $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (similarly for the others). A better way to handle this problem is discussed in Section 15.1.1.
${ }^{\mathrm{ET}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ also stores some useful numbers:

- \time is the time of day in minutes since midnight
- \day is the day of the month
- \month is the month of the year
- \year is the current year

You can include these numbers in your document by using the \backslash the command:
Year: \the\year; month: \the\month; day: \the\day
produces a result such as

Year: 2006; month: 7; day: 11
\qquad
Of more interest is the \today command, which produces today's date in the form: July 11, 2006. It is often used as the argument of the \date command (see Section 11.2.1).

Remember the termination rule (Rule 3 in Section 5.3.1).
today's date in the form: \today (you may want produces
Γ
today's date in the form: July 11, 2006(you may want

To get the desired effect, type \backslash_{\sqcup} or $\}$ after the \backslash today command:
today's date in the form: \today \backslash (you may want

Name	Type	Typeset	Type	Typeset
a-ring	\aa	å	\backslash AA	A
aesc	\ae	æ	$\backslash \mathrm{AE}$	Æ
ethel	\oe	œ	\OE	(E
eszett	\ss	β	\SS	SS
inverted question mark	? ${ }^{\prime}$	i		
inverted exclamation mark	!'	i		
slashed L	\1	f	$\backslash \mathrm{L}$	L
slashed O	\o	\emptyset	$\backslash 0$	\varnothing

Table 5.4: European characters.

Name	Type	Typeset
ampersand	\backslash \&	
asterisk bullet	∗	*
backslash	\	1
bar (caesura)	\|	
brace left		
	\{	
brace right		
$}$	\}	
bullet	•	\bullet
circled a	\textcircled\{a\}	(a)
circumflex	ˆ	
copyright	\copyright	(c)
dagger	\backslash dag	+
double dagger (diesis)	\backslash ddag	\ddagger
dollar		
$	\$	
double quotation left	“ or "	"
double quotation right	” or ',	"
em dash	— or ---	-
en dash	– or --	-
exclamation down	¡ or ! ${ }^{\text {c }}$	i
greater than	>	>
less than	<	$<$
lowline	_	-
midpoint	·	
octothorp		
#	\#	
percent		
%	\%	
pilcrow (paragraph)	$\backslash \mathrm{P}$	¢
question down	¿ or ? ${ }^{\text {¢ }}$	¿
registered trademark	®	®
section	$\backslash \mathrm{S}$	§

Table 5.5: Extra text symbols.

5.4.9 Hyphenation

ETEX reads the source file one line at a time until it reaches the end of the current paragraph and then tries to balance the lines (see Section D.3.2). To achieve this goal, ETEX hyphenates long words using a built-in hyphenation algorithm, a database stored in the hyphen.tex file, and a long \hyphenation list in the AMS document classes. If you use a document class not containing such a list, copy the hyphenation list from amsart to your document.

Rule ■ Optional hyphen

If you find that $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ cannot properly hyphenate a word, put optional hyphens in the word. An optional hyphen is typed as $\backslash-$, and allows $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to hyphenate the word where the optional hyphen is placed-and only at such points-if the need arises.

Examples: data\-base, an\-ti\-thet\-ic, set\-up
Note that:

- Optional hyphens prevent hyphenation at any other point in the word.
- Placing an optional hyphen in a particular occurrence of a word does not affect the hyphenation of any other occurrences of that word.

Rule ■ Hyphenation specifications

List the words that often need help in a command:

```
\hyphenation\{set-up as-so-ciate\}
```

All occurrences of the listed words following this command in your document are hyphenated as specified.

Note that in the \hyphenation command the hyphens are designated by - and not by $\backslash-$, and that the words are separated by spaces not by commas.

You must use optional hyphens for words with accented characters, as in
Gr\"\{a\}t\-zer
Such words cannot be included in a \hyphenation list (unless you use the T1 font encoding-see Appendix G).

Rule ■ Preventing hyphenation

To prevent hyphenation of a word, put it in the argument of a \text command or place it unhyphenated in a \hyphenation command.

For example, type
\text\{database\}
if you do not want this instance of database hyphenated, or type
\hyphenation\{database\}
if you do not want $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to hyphenate any occurrence of the word after this command in your document. Of course, typing data \-base overrides the general prohibition for this one instance.

You can have any number of \hyphenation commands in your document.

Tip $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ does not break a hyphenated word except at the hyphen, nor does it break a word followed by or preceding an em dash or en dash (see Section 5.4.2). EATEX often needs help with such words.

Sometimes a hyphen in a phrase should not be broken. For instance, the phrase \mathfrak{m}-complete lattice should not be broken after \mathfrak{m}; so type it as
\text\{\$\mathfrak\{m\}\$-com\}\-plete lattice
(see Section 8.3.2 for \mathfrak).
Use the \nobreakdash command (placed before the hyphen)
\nobreakdash- \nobreakdash-- \nobreakdash---
to prevent such breaks. For example,
pages ${ }^{\sim} 24 \backslash$ nobreakdash--47
Since $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ does not hyphenate a hyphenated word except at the hyphen,
\nobreakdash-
prevents the hyphenation of the whole word as though it were enclosed in a \text command. The form
\nobreakdash-\hspace\{0pt\}
allows the normal hyphenation of the word that follows the hyphen. For example,

\$\mathfrak\{m\}\$\nobreakdash-\hspace\{0pt\}complete lattice

allows the word complete to be hyphenated.
This coding of the phrase \mathfrak{m}-complete lattice is a natural candidate for a userdefined command (see Section 15.1.1).

Tip If you want to know how $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ would hyphenate a list of words, place it in the argument of a \showhyphens command.

For instance,
\showhyphens\{summation reducible latticoid\}
The result,

```
sum-ma-tion re-ducible lat-ti-coid
```

is shown in the log file.

Tip Some text editors wrap lines in a source file by breaking them at a hyphen, introducing errors in your typeset document.

For instance,
It follows from Theorem~ $\operatorname{rref}\{T: M\}$ that completesimple lattices are very large.
is typeset by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ as follows:

It follows from Theorem 2 that complete- simple lattices are very large.

L

As you can see, there is a space between the hyphen and the word simple. The text editor inserted an end-of-line character after the hyphen (by the second space rule, see Section 5.2.1). This end-of-line character was interpreted by $\mathrm{ETEX}_{\mathrm{E}}$ as a space. To correct the error, make sure that there is no such line break, or comment out (see Section 5.5.1) the end-of-line character:

```
It follows from Theorem~\ref{T:M} that complete-%
simple lattices are very large.
```

Better yet, rearrange the two lines:

```
It follows from Theorem~\ref{T:M} that
complete-simple lattices are very large.
```

Of course, $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ does not know everything about the complicated hyphenation rules of the English language. Consult The Chicago Manual of Style, 15th edition [11] and Lyn Dupré's BUGS in Writing: A Guide to Debugging Your Prose, 2nd edition [13] for additional guidance.

5.5 Comments and footnotes

Various parts of your source file do not get typeset like most of the rest. The two primary examples are comments that do not get typeset at all and footnotes that get typeset at the bottom of the page.

5.5.1 Comments

The \% symbol tells LATEX to ignore the rest of the line. A common use might be a comment to yourself in the source file:

```
therefore, a reference to Theorem~1 % check this!
```

The \% symbol has many uses. For instance, a document class command (see Section 11.5),
\documentclass[twocolumn, twoside,legalpaper] \{amsart\}
may be typed with explanations, as

```
\documentclass[%
twocolumn,% option for two-column pages
twoside,% format for two-sided printing
legalpaper% print on legal-size paper
] {amsart}
```

so you can easily comment out some at a later time, as in

```
\documentclass[%
%twocolumn,% option for two-column pages
%twoside,% format for two-sided printing
legalpaper% print on legal-size paper
] {amsart}
```

Notice that the first line is terminated with a \% to comment out the end-of-line character.

Tip Some command arguments do not allow any spaces. If you want to break a line within an argument list, you can terminate the line with $\mathrm{a} \%$, as shown in the previous example.

See also the example at the end of Section 5.4.9.

It is often useful to start a document with a comment line giving the file name and identifying the earliest version of $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ that must be used to typeset it.

```
% This is article.tex
\NeedsTeXFormat{LaTeX2e}[1994/12/01]
```

The second line specifies the December 1, 1994 (or later) release of ETEX. You may need to use such a declaration if your document uses a feature that was not available in earlier releases. Since $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ changes very little these days, this command is of limited use. (See, however, the discussion on page 311.)

Other uses of \% include marking parts of the article for your own reference. For instance, you may include comments to explain command definitions (as in Section 15.3). If something goes wrong inside a multiline math display (see Chapter 9), ETEX does not tell you precisely where the error is. You can try commenting out all but one of the lines, until each line works separately.

Note that \% does not comment out lines in a BibTEX database document (see Section 16.2.4).

Tip The 25% rule

If you want a $\%$ sign in text, make sure you type it as $\backslash \%$. Otherwise, $\%$ comments out the rest of the line. $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ does not produce a warning.

Using \% to comment out large blocks of text can be tedious even with block comment. The verbatim package includes the comment environment:

```
\begin{comment}
    ...the commented out text...
\end{comment}
```


Rule ■ comment environments

1. \end\{comment\} must be on a line by itself. }
2. There can be no comment within a comment.

In other words,

```
\begin{comment}
    commented out text...
    \begin{comment}
        some more commented out text...
    \end{comment}
```

```
    and some more commented out text...
\end{comment}
```

is not allowed. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ may give one of several error messages, depending on the circumstances. For instance,
! LaTeX Error: \begin\{document\} ended by \end\{comment\}. }
1.175 \end\{comment\} }

The comment environment can be very useful in locating errors. Suppose you have unbalanced braces in your source file (see Section 5.3.2). Working with a copy of your source file, comment out the first half at a safe point (not within an environment!) and typeset. If you still get the same error message, the error is in the second half. If there is no error message, the error is in the first half. Comment out the half that has no error.

Now comment out half of the remaining text and typeset again. Check to see whether the error appears in the first half of the remaining text or the second. Continue applying this method until you narrow down the error to a paragraph that you can inspect visually.

Since the comment environment requires the verbatim package, you must include the line
verbatim\}inthepreambleofthesourcefile(seeSections12.3.1andE.1).undefined

5.5.2 Footnotes

The text of a footnote is typed as the argument of a \backslash footnote command. To illustrate the use of footnotes, I have placed one here. ${ }^{1}$ This footnote is typed as

```
\footnote{Footnotes are easy to place.}
```

If you want to use symbols to designate the footnotes, instead of numbers, type the command

```
\renewcommand{\thefootnote}
    {\ensuremath{\fnsymbol{footnote}}}
```

before the first footnote; this provides up to nine symbols. In Section 15.1.1, we discuss the \ensuremath command. Section 3.2 of The ${ }^{A T} T_{E} X$ Companion, 2nd edition [46] describes how to further customize footnotes.

In addition, there are title-page footnotes, such as the \thanks and \date commands in the top matter. See page 42 for a typeset example of \date. See also Section 11.2 and the typeset title page footnotes on page 286.

[^3]You can add a footnote marked by * to the title of an article. For instance, type the title

```
\title[Complete congruence lattices]%
    {Complete congruence lattices$`*$}
and add the lines
{\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\setcounter{footnote}{1}
\footnotetext{Lecture delivered at the \AMS
    annual meeting in Brandon.}
\setcounter{footnote}{0}
}
```

The footnote will appear as the first footnote on page 1 marked by ${ }^{*}$. All the other footnotes are unmarked.

5.6 Changing font characteristics

Although a document class and its options determine how $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ typesets characters, there are occasions when you want control over the shape or size of the font used.

5.6.1 Basic font characteristics

You do not have to be a typesetting expert to recognize the following basic font attributes:

Shape Normal text is typeset:
upright (or roman) as this text
slanted as this text
italic as this text
small caps AS THIS TEXT
Monospaced and proportional Typewriters used monospaced fonts, that is, fonts all of whose characters are of the same width. Most text editors display text using a monospaced font. LATEX calls monospaced fonts typewriter style. In this book, such a font is used to represent user input and LATEX's response, such as "typewriter style text". Whereas, normal text is typeset in a proportional font, such as "proportional text with ii and mm", in which i is narrow and m is wide:
$\left.\begin{array}{l}\operatorname{mmmmm} \\ \text { iiiiii }\end{array}\right\}$ monospaced
$\left.\begin{array}{l}\text { mmmmmm } \\ \text { iiiiii }\end{array}\right\}$ proportional

Serifs A serif is a small horizontal (sometimes vertical) stroke used to finish off a vertical stroke of a letter, as on the top and bottom of the letter M. ETEX's standard serif font is Computer Modern roman, such as "serif text". Fonts without serifs are called sans serif, such as "sans serif text". Sans serif fonts are often used for titles or for special emphasis.

Series: weight and width The series is the combination of weight and width. A font's weight is the thickness of the strokes and the width is how wide the characters are. Light, medium (or normal), and bold often describe weight.

Narrow (or condensed), medium (or normal), and extended often describe width.
The Computer Modern family includes bold fonts. Traditionally, when the user asks for bold CM fonts, $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ actually provides bold extended (a somewhat wider version).

Size Most ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ articles are typeset with 10 point text unless otherwise instructed. Larger sizes are used for titles, section titles, and so on. Abstracts and footnotes are often set in 8-point type.

Font family The collections of all sizes of a font is called a font family.

5.6.2 Document font families

In a document class, the style designer designates three document font families:

1. Roman (upright and serifed) document font family
2. Sans serif document font family

3. Typewriter style document font family

and picks one of these (for articles, as a rule, the roman document font family) as the document font family or normal family. In all the examples in this book, the document font family is the roman document font family except for presentations which use sans serif (see Section 4.4 and Chapter 14). When you use Computer Modern fonts in ${ }^{\mathrm{LT}} \mathrm{E} \mathrm{X}$, which is the default, the three document font families are Computer Modern roman, Computer Modern sans serif, and Computer Modern typewriter. The document font family is Computer Modern roman.

In this book, the roman document font family is Times, the sans serif document font family is Helvetica, and the typewriter style document font family is Computer Modern typewriter. The document font family is the roman document font family Times.

The document font family (normal family) is the default font. You can always switch back to it with

```
\textnormal{...} or {\normalfont ...}
```

Table 5.6 shows these two commands and three additional pairs of commands to help you switch among the three basic document font families. It also shows the command pairs for the basic font shapes.

Command with Argument	Command Declaration	Switches to the font family
\textnormal\{...\}	\{\normalfont ...\}	document
\emph\{...\}	\{\em ...\}	emphasis
\textrm\{...\}	\{\rmfamily ...\}	roman
\textsf\{...\}	\{\sffamily ...\}	sans serif
\texttt\{...\}	\{\ttfamily ...\}	typewriter style
\textup\{...\}	\{\upshape ...\}	upright shape
\textit\{...\}	\{\itshape ...\}	italic shape
\textsl\{...\}	\{\slshape ...\}	slanted shape
\textsc\{...\}	\{\scshape ...\}	Small capitals
\textbf\{...\}	$\{\backslash$ bfseries ...\}	bold
\textmd\{...\}	$\{\backslash m d s e r i e s ~ . .\}$.	normal weight and width

Table 5.6: Font family switching commands.

Command pairs

The font-changing commands of Table 5.6 come in two forms:

- A command with an argument, such as \textrm\{ . . .\}, changes its argument. These are short commands, i.e., they cannot contain a blank line or a \backslash par command.
- A command declaration, such as \rmfamily, carries out the font change following the command and within its scope (see Section 5.3.2).

You should always use commands with arguments for small changes within a paragraph. They have two advantages:

- You are less likely to forget to change back to the normal font.
- You do not have to worry about italic corrections (see Section 5.6.4).

Note that MakeIndex requires you to use commands with arguments to change the font in which page numbers are typeset (see Section 17.1).

For font changes involving more than one paragraph, use command declarations. These commands are preferred if you want to create user-defined commands and environments (see Chapter 15).

5.6.3 Shape commands

There are five pairs of commands to change the font shape:

- \textup\{...\} or \{\upshape ...\} switch to the upright shape.
- \textit\{...\} or $\{\backslash i t s h a p e . .$.$\} switch to the italic shape.$
- \textsl\{...\} or \{\slshape ...\} switch to the slanted shape.
- \textsc\{...\} or \{\scshape ...\} switch to Small Capitals.
- \emph\{ . . \} or $\{\backslash \mathrm{em} \ldots\}$ switch to emphasis.

The document class specifies how emphasis is typeset. As a rule, it is italic or slanted unless the surrounding text is italic or slanted, in which case it is upright. For instance,
\emph\{Rubin space\}
in the statement of a theorem is typeset as

Γ

the space satisfies all three conditions, a so-called Rubin space that ...

The emphasis changed the style of Rubin space from italic to upright.

Tip Be careful not to interchange the command pairs. For instance, if by mistake you type \{\textit serif\}, the result is serif. Only the s is italicized since \textit takes s as its argument.

Rule ■ Abbreviations and acronyms

For abbreviations and acronyms use small caps, except for two-letter geographical acronyms.

So Submitted to TUG should be typed as
Submitted to \textsc\{tug\}
Note that only the lowercase characters in the argument of the \textsc command are printed as small caps.

5.6.4 Italic corrections

The phrase
Γ
when using a serif font
L
may be typed as follows:

The $\backslash /$ command before the closing brace is called an italic correction. Notice that $\{\backslash$ itshape $M\} M$ typesets as $M M$, where the M is leaning into the M . Type $\{\backslash$ itshape $\mathrm{M} \backslash /\} \mathrm{M}$ to get the correct spacing $M \mathrm{M}$. Compare the typeset phrase from the previous example with and without an italic correction:
when using a serif font
when using a serif font

The latter is not as pleasing to the eye.

Rule 1 ■ Italic correction

If the emphasized text is followed by a period or comma, you should not type the italic correction.

For example,
Do not forget. My party is on Monday.
should be typed as
\{\itshape Do not forget.\} My party is on Monday.

Rule 2 ■ Italic correction

The shape commands with arguments do not require italic correction. The corrections are provided automatically where needed.

Thus you can type the phrase when using a serif font the easy way:

```
when using a \textit{serif} font
```

Whenever possible, let $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ take care of the italic correction. However, if $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is adding an italic correction where you feel it is not needed, you can override the correction with the \backslash nocorr command. ETEX does not add an italic correction before a period or a comma. These two punctuation marks are stored in the \nocorrlist command. By redefining this command, you can modify ETEX's behavior.

Rule 3 ■ Italic correction

The italic correction is required with the commands \itshape, \slshape, \em.

Command	Sample text
\Tiny	sample text
\tiny	sample text
\SMALL or \scriptsize	sample text
\Small or \footnotesize	sample text
\small	sample text
\normalsize	sample text
\large	sample text
\Large	sample text
\LARGE	sample text
\huge	Sample text
\Huge	Sample text

Table 5.7: Font size commands.

5.6.5 Series

These attributes play a very limited role with the Computer Modern fonts. There is only one important pair of commands,
\textbf\{...\} \{\bfseries ...\}
to change the font to bold (actually, bold extended). The commands
\textmd\{...\} \{\mdseries ...\}
which set both the weight and width to medium (normal) are seldom needed.

5.6.6 Size changes

Standard $\mathrm{ETEX}_{\mathrm{E}}$ documents are typeset in 10 point type. The 11 point and 12 point type are often used for greater readability and some journals require 12 point-if this is the case, use the 12 pt document class option (see Sections 11.5, 12.1.2, and 18.1.3). The sizes of titles, subscripts, and superscripts are automatically set by the document class, in accordance with the font size option.

If you must change the font size for some text-it is seldom necessary to do so in an article-the following command declarations are provided (see Table 5.7):

```
\Tiny \tiny \SMALL \Small \small
    \normalsize
\large \Large \LARGE \huge \Huge
```

The command \SMALL is also called \scriptsize and the command \backslash Small is also called \backslash footnotesize. The font size commands are listed in order of increasing-to be more precise, nondecreasing-size.

Two commands allow the user to increase or decrease font size: \larger moves up one size, \smaller moves down one. Both commands take an optional argument. For example, \larger [2] moves up 2 sizes.

5.6.7 Orthogonality

You are now familiar with the commands that change the font family, shape, series, and size. Each of these commands affects one and only one font attribute. For example, if you change the series, then the font family, shape, and size do not change. These commands act independently. In ETEX terminology, the commands are orthogonal. From the user's point of view this behavior has an important consequence: The order in which these commands are given does not matter. Thus
\Large \itshape \bfseries
has the same effect as

```
\bfseries \itshape \Large
```

Note that $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ 2.09's two-letter commands (see Section 5.6.8) are not orthogonal.
Orthogonality also means that you can combine these font attributes in any way you like. For instance, the commands

```
\sffamily \slshape \bfseries \Large
```

instruct $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to change the font family to sans serif, the shape to slanted, the series to bold, and the size to \Large. If the corresponding font is not available, $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ uses a font that is available, and issues a warning. The font substitution algorithm (see Section 7.9.3 of The $L^{A} T_{E} X$ Companion, 2nd edition [46] for details) may not provide the font you really want, so it is your responsibility to make sure that the necessary fonts are available. We discuss this topic further in Section 18.5.

5.6.8 Obsolete two-letter commands

Users of ETTEX 2.09 and $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX version 1.1 are accustomed to using the two-letter commands \bf, \it, \rm, \sc, \sf, \sl, and \tt. These commands are not part of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. They are, however, still defined in most document classes. The two-letter commands

1. switch to the document font family,
2. change to the requested shape.

There are a number of reasons not to use them. The two-letter commands

- are not part of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$,
- require manual italic corrections,
- are not orthogonal (see Section 5.6.7).
 $\backslash s l \backslash b f$ is not the same as $\backslash b f \backslash s l$. Indeed, $\{\backslash s l \backslash b f$ sample $\}$ gives sample and $\{\backslash b f \backslash s l$ sample\} produces sample.

5.6.9 Low-level commands

The font-characteristic changing commands we discussed in this section are the highlevel font commands. Each of these commands is implemented by ETEX and the document class using low-level font commands. The low-level commands have been developed for document class and package writers. See Section 7.9 of The LATEX Companion, 2nd edition [46].

There is one use of low-level commands you should keep in mind. When you choose a font size for your document or for some part thereof, you also determine the \backslash baselineskip, the distance from the baseline of one line to the baseline of the next. Typically, a 10-point font size uses a 12 point \baselineskip. Occasionally, you may want to change the font size along with the \baselineskip. A command for accomplishing this is
\fontsize\{9pt\}\{11pt\}\selectfont
which changes the font size to 9 point and the \baselineskip to 11 point. To make this change for a single paragraph, you can type

```
{%special paragraph
\fontsize{9pt}{11pt}\selectfont
text
}%end special paragraph
```

Observe the blank line that follows text and marks the end of the paragraph; \par would accomplish the same thing.

5.7 Lines, paragraphs, and pages

When typesetting a document, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ breaks the text into lines, paragraphs, and pages. Sometimes you may not like how $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ has chosen to lay out your text. There are ways to influence how $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ does its work and these are discussed in this section.

5.7.1 Lines

${ }^{\mathrm{ET}} \mathrm{E} \mathrm{X}$ typesets a document one paragraph at a time. It tries to split the paragraph into lines of equal width. If it fails to do so successfully and a line is too wide, you get an overfull \hbox message. Here is a typical example:

```
Overfull \hbox (15.38948pt too wide) in paragraph
    at lines 11--16
[]\OT1/cmr/m/n/10 In sev-eral sec-tions of the course
    on ma-trix
the-ory, the strange term ''hamiltonian-
```

The log file records these error messages. To place a visual warning in the typeset version of your document as well, use the draft document class option
\documentclass[draft]\{amsart\}

Lines that are too wide are be marked with a slug (a black box) in the margin. A slug is a vertical bar of width \overfullrule.

Do not worry about such messages while writing the document. If you are preparing the final version and receive a message for an overfull \hbox, the first line of defense is to see whether optional hyphens would help (see Section 5.4.9). Read the warning message carefully to see which words ${ }^{\mathrm{ET}} \mathrm{E} \mathrm{X}$ cannot hyphenate properly. If adding optional hyphens does not help, a simple rephrasing of the problem sentence often does the trick.

Recall that there are 72.27 points in an inch (see Section 2.3). So if the error message indicates a 1.55812 pt overflow, for instance, you can safely ignore it.

Tip If you do not want the 1.55812 pt overflow reported whenever the document is typeset, you can enclose the offending paragraph (including the blank line indicating the end of the paragraph) between the lines
$\{\backslash$ setlength $\{\backslash$ hfuzz $\}\{2 \mathrm{pt}\}$
and
\}\% end of $\backslash h f u z z=2 p t$

Choose an argument that is slightly more than the reported error (maybe 2 pt). This does not affect the typeset output, but the warning message and the slug, if you are using the draft option, are suppressed.

Alternatively, enclose the offending paragraph including the blank line indicating the end of the paragraph in a setlength environment:

```
\begin{setlength}{\hfuzz}{2pt}
\end{setlength}
```


Breaking lines

There are two forms of the line breaking command:

- The $\backslash \backslash$ and \backslash newline commands break the line at the point of insertion but do not stretch it.
- The \linebreak command breaks the line at the point of insertion and stretches the line to make it of the normal width.

The text following any of these commands starts at the beginning of the next line, without indentation. The $\backslash \backslash$ command is often used, but \backslash linebreak is rarely seen. (See Section 18.6 for an application of the \linebreak command.) I illustrate the effect of these commands:

There are two forms of the line breaking command:

There are two forms $\backslash \backslash$ of the line breaking command:

There are two forms \newline of the line breaking command:

There are two forms \linebreak of the line breaking command:
typeset as
Γ
There are two forms of the line breaking command:
There are two forms
of the line breaking command:
There are two forms
of the line breaking command:
There are two forms
of the line breaking command:

If you force a line break in the middle of a paragraph with the \linebreak command and ETEX thinks that there is too little text left on the line to stretch it to full width, you get a message such as

```
Underfull \hbox (badness 4328) in paragraph
    at lines 8--12
```

The $\backslash \backslash$ command has two important variants:

-
[length], where length is the interline space you wish to specify after the line break, for instance, 12 pt , 5 in , or 1.2 cm . Note how the units are abbreviated.
-
*, which prohibits a page break following the line break.

The $\backslash \backslash *[$ length] form combines the two variants. We illustrate the $\backslash \backslash$ [length] command:

It is also semimodular. $\backslash \backslash[15 \mathrm{pt}]$ In particular,
which is typeset as

\ulcorner

It is also semimodular.

In particular,

Since $\backslash \backslash$ can be modified by $*$ or by [], ATEX may get confused if the line after a $\backslash \backslash$ command starts with $\mathrm{a} *$ or [. In such cases, type $*$ as $\{*\}$ or [as $\{[\}$. For instance, to get

Γ

There are two sources of problems:
[a] The next line starts with [.
type
There are two sources of problems:

\{[\}a] The next line starts with \texttt\{[\}.
If you fail to type $\{[\}$, you get the error message
! Missing number, treated as zero.
<to be read again>
a
1.16 [a]

The next line starts with \texttt\{[\}.

\section*{Rule ■
}

Without optional arguments, the $\backslash \backslash$ command and the \newline command are the same in text, but not within environments or command arguments.

You can qualify the \linebreak command with an optional argument: 0 to 4. The higher the argument, the more it forces the occurrence of a line break. The \linebreak[4] command is the same as \linebreak, while \linebreak[0] allows the line break but does not force it.

The \nolinebreak command plays the opposite role. \nolinebreak[0] = \linebreak [0], and \nolinebreak[4] = \nolinebreak. \nolinebreak is seldom used since the tie (\sim) and the \backslash text command (see Section 5.4.3) accomplish the same goal most of the time.

Double spacing

It is convenient to proofread documents double spaced. Moreover, some journals require submissions to be double spaced.

To typeset a document double spaced, include the command
tspreamble.Alternatively,getGeorgeD.Greenwade'ssetspace(seeSectionE.1onhowtogetit).Loadthispackagewitha\usepackage\{setspace\}commandinthepreambleofthedocumentandspecify\doublespacinginthepreamble.Thischangesnotjustthelinespacingbutanumberofotherparameterstomakeyourarticlelookgood.undefined

See also Section 3.1.13 of The $L^{A} T_{E} X$ Companion, 2nd edition [46].

5.7.2 Paragraphs

Paragraphs are separated by blank lines or by the \par command. Error messages always show paragraph breaks as \backslash par. The \backslash par form is also very useful in userdefined commands and environments (see Sections 15.1 and 15.2).

In some document classes, the first line of a paragraph is automatically indented. Indentation can be prevented with the \noindent command and can be forced with the \indent command.

Sometimes-for instance, in a schedule, glossary, or index-you may want a hanging indent, where the first line of a paragraph is not indented, and all the others are indented by a specified amount.

Hanging indents are created by specifying the amount of indentation specified by \hangindent and set with the \setlength command:

```
\setlength{\hangindent}{30pt}
\noindent
```

```
\textbf{sentence} a group of words terminated by
    a period, exclamation point, or question mark.
    \setlength{\hangindent}{30pt}
    \noindent
    \textbf{paragraph} a group of sentences terminated by a
    blank line or by the new paragraph command.
    produces
```

Γ
sentence a group of words terminated by a period, exclamation point, or question mark.
paragraph a group of sentences terminated by a blank line or by the new paragraph command.

Notice that the \setlength command must be repeated for each paragraph.
Sometimes you may want to change the value of \hangafter, the length command that specifies the number of lines not to be indented. The default value is 1 . To change it to 2 , use the command
\setlength\{\hangafter\}\{2\}
For more about the \backslash setlength command, see Section 15.5.2. The $L^{A T} E_{E} X$ Companion, 2nd edition [46] discusses in Section 3.1.4 the style parameters of a paragraph.

The preferred way to shape a paragraph or series of paragraphs is with a custom list environment (see Section 15.6).

5.7.3 Pages

There are two page breaking commands:

-
, which breaks the page at the point of insertion but does not stretch the content
-
, which breaks the page at the point of insertion and stretches the page's content to normal length

Text following either command starts at the beginning of the next page, indented.
As you can see, the page breaking commands are analogous to the line breaking commands discussed in Section 5.7.1. This analogy continues with the optional argument, 0 to 4:

```
                    \pagebreak[0] to \pagebreak[4]
\nopagebreak[0] to \nopagebreak [4]
```

There are also special commands for allowing or forbidding page breaks in multiline math displays (see Section 9.9).

When preparing the final version of a document (see Section 18.5), you may have to extend or shrink a page by a line or two to prevent it from breaking at an unsuitable line. You can do so with the \enlargethispage command. For instance,

```
\enlargethispage{\baselineskip}
```

adds one line to the page length. On the other hand,

```
\enlargethispage{-\baselineskip}
```

makes the page one line shorter.
\enlargethispage\{10000pt\}
makes the page very long.
The *-ed version, \enlargethispage*, squeezes the page as much as possible. There are two more variants of the
 command. The

command does a
 and typesets all the figures and tables waiting to be processed (see Section 10.4.3). The variant
\cleardoublepage
is used with the twoside document class option (see Sections 11.5 and 12.1.2). It does a
 and in addition makes the next printed page a right-hand, that is, oddnumbered, page, by inserting a blank page if necessary. If for your document class this does not work, use the package cleardoublepage.sty in the samples folder.

Section 18.6 discusses the use of some of these commands in the final preparation of books.

5.7.4 Multicolumn printing

Many document classes provide the twocolumn option for two-column typesetting (see Sections 11.5 and 12.1.2). In addition, there is a \twocolumn command which starts a new page by issuing a
 and then typesets in two columns. An optional argument provides a two-column wide title. Use the \onecolumn command to switch back to a one-column format.

Frank Mittelbach's multicol package (see Section 12.3.1) provides the much more sophisticated multicols environment, which can start in the middle of a page, can handle more than two columns, and can be customized in a number of ways (see Section 3.5.3 of The ${ }^{4} T T_{E} X$ Companion, 2nd edition [46]).

5.8 Spaces

The judicious use of horizontal and vertical space is an important part of the formatting of a document. Fortunately, most of the spacing decisions are made by the document class, but $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ has a large number of commands that allow the user to insert horizontal and vertical spacing.

Remember that $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ ignores excess spaces, tabs, and end-of-line characters. If you need to add horizontal or vertical space, then you must choose from the commands in this section. Use them sparingly.

5.8.1 Horizontal spaces

In this section, we discuss fixed length horizontal space commands. Variable length horizontal space is discussed in Section 5.8.4.

When typing text, there are three commands that are often used to create horizontal space, shown between the bars in the display below:

The \quad command creates a 1 em space and \qquad creates a 2 em space (see Section 5.8.3). The interword space created by $_{\sqcup}$ can both stretch and shrink. There are other commands that create smaller amounts of space. All the math spacing commands of Section 8.1.3-with the exception of \backslash mspace-can be used in ordinary text (see Sections B. 9 and C.6), but the \hspace and \phantom commands are more appropriate.

The \hspace command takes a length as a parameter. The length may be negative. For example,

```
\textbar\hspace{12pt}\textbar
\textbar\hspace{.5in}\textbar
\textbar\hspace{1.5cm}\textbar
```

or \hspace\{-40pt\}. The command \hspace is often used with a negative argument when placing illustrations.

The \backslash phantom $\{$ argument \} command produces a space the width and height of the space that would be occupied by its typeset argument

\| need space\|	need space
\| \backslash phantom\{need space\}\|	

and

```
alpha \phantom{beta} gamma \phantom{delta}\\\
\phantom{alpha} beta \phantom{gamma} delta
```

produces

Γ

alpha gamma delta

L
The \backslash phantom command is very useful for fine tuning aligned math formulas (see Sections 8.1 and 9.5.3). The variant

\hphantom\{argument \}

creates a space with the horizontal dimension that would be occupied by its typeset argument and with zero height.

For instance, the last two lines of the dedication of this book were typed as follows:

```
\textbf{Emma} (2), \phantom{and \textbf{Kate} (0)}\\[8pt]
    and \textbf{Kate} (0)
```

See Section C. 6 for a table of all horizontal text-spacing commands.

Horizontal space variant

When IATEX typesets a line, it removes all spaces from the beginning of the line, including the space created by \hspace, \quad, and other spacing commands. Using the *-ed variant of \backslash hspace, \hspace*, prevents IATEX from removing the space you have specified.

For example,
And text $\backslash \backslash$
\hspace\{20pt\}And text $\backslash \backslash$
\hspace*\{20pt\}And text
is typeset as

And text
And text
And text

Use the \hspace* command for creating customized indentation. To indent a paragraph by 24 points, give the command
\noindent \backslash hspace*\{24pt\}And text
which typesets as

And text

To break a line and indent the next line by 24 points, give the command
And text $\backslash \backslash$
\hspace*\{24pt\}And text
which produces

And text
And text

5.8.2 Vertical spaces

You can add some interline space with the command $\backslash \backslash$ [length], as discussed in Section 5.7.1. You can also do it with the \vspace command, which works just like the \hspace command (see Section 5.8.1), except that it creates vertical space. Here are some examples:
\vspace\{12pt\} \vspace\{.5in\} \vspace\{1.5cm\}.
Standard amounts of vertical space are provided by the three commands
\smallskip \medskip \bigskip
The space these commands create depends on the document class and the font size. With the document class and font I am using for this book, they represent a vertical space of 3 points, 6 points, and 12 points, respectively. 12 points is the baseline skip (see Section 5.6.9) in standard LATEX documents with the default 10pt option.

Rule ■ Vertical space commands

All vertical space commands add the vertical space after the typeset line in which the command appears.

To obtain
\square
end of text.

New paragraph after vertical space

```
    type
    end of text.
    \vspace{12pt}
    New paragraph after vertical space
```

The following example illustrates the unexpected way the vertical space is placed if the command that creates it does not start a new paragraph:

```
end of text.
```

\vspace\{12pt\}
The following example illustrates the unexpected way
the vertical space is placed if the
command that creates it does not start a new paragraph:

It typesets as
Γ
end of text. The following example illustrates the unexpected way the vertical
space is placed if the command that creates it does not start a new paragraph:

Vertical space variants

${ }^{\text {LTHEX }}$ removes vertical space from the beginning and end of each page, including space produced by \vspace. The space created by the variant \vspace* is not removed by LATEX under any circumstances. Use this command, for instance, to start the typeset text (say, of a letter) not at the top of the page.

The \phantom command has also a vertical variant: \vphantom. The command \vphantom\{argument\} creates a vertical space with the vertical dimension that would be occupied by its typeset argument, argument .

5.8.3 Relative spaces

The length of a space is usually given in absolute units: 12 pt (points), .5 cm (centimeters), 1.5in (inches). Sometimes, relative units, em and ex, are more appropriate, units that are relative to the size of the letters in the current font. The unit 1 em is approximately the width of an M in the current font, 1 ex is approximately the height of an x in the current font. These units are used in commands such as
\hspace\{12em\} and \vspace\{12ex\}
The \quad and \qquad commands (Section 5.8.1) produce 1 em and 2 em spaces.

5.8.4 Expanding spaces

Horizontal spaces

The \hfill, , and \hrulefill commands fill all available space in the line with spaces, dots, or a horizontal line, respectively. If there are two of these commands on the same line, the space is divided equally between them. These commands can be used to center text, to fill lines with dots in a table of contents, and so on.

To obtain
Γ
2. Boxes... 34 ABC and DEF
\qquad
\qquad
type
2. Boxes $34 \backslash \backslash$

ABC\hfill and $\backslash h f i l l ~ D E F \backslash \backslash$
ABC \backslash hrulefill and \backslash hrulefill DEF
In a centered environment-such as a \backslash title (see Section 11.2.1) or a center environment (see Section 6.3)—you can use \hfill to set a line flush right:

This is the title
First Draft
Author

To achieve this effect, type

```
\begin{center}
    This is the title\\
    \hfill First Draft\\\
    Author
\end{center}
```


Vertical spaces

The vertical analogue of $\backslash h f i l l$ is \vfill. This command fills the page with vertical space so that the text before the command and the text after the command stretch to the upper and lower margin. You can play the same games with it as with $\backslash \mathrm{hfill}$ in Section 5.8.4.

The command $\backslash v f i l l$ stands for $\backslash v s p a c e\{\backslash f i l l\}$, so it is ignored at the beginning of a page. Use \backslash vspace*\{ \backslash fill $\}$ if you need it at the beginning of a page.

5.9 Boxes

Sometimes it can be useful to typeset text in an imaginary box, and treat that box as a single large character. A single-line box can be created with the \text or \backslash makebox commands and a multiline box of a prescribed width can be created with the \parbox command or minipage environment.

5.9.1 Line boxes

The \text command provides a line box that typesets its argument without line breaks. As a result, you may find the argument extending into the margin. The resulting box is handled by $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ as if it were a single large character. For instance,

```
\text{database}
```

causes $\mathrm{ETT}_{\mathrm{E}} \mathrm{X}$ to treat the eight characters of the word database as if they were one. This technique has a number of uses. It prevents $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ from braking the argument (see Section 5.4.9). It also allows you to use the phrase in the argument in a formula (see Section 7.4.6).

The argument of \text is typeset in a size appropriate for its use, for example, as a subscript or superscript. See Section 7.4.6 for an example.

Line boxes-a refinement

The $\backslash m b o x$ command is the short form of the \backslash makebox command. Both $\backslash m b o x$ and \text prevent breaking the argument, but \backslash mbox does not change size in subscripts and superscripts.

The full form of the \backslash makebox command is

```
\makebox[width][alignment]{text}
```

where the arguments are

- width, the (optional) width of the box. If [width] is omitted, the box is as wide as necessary to enclose its contents.
- alignment, (optionally) one of c (the default), $1, r$, or s. The text is centered by default, 1 sets the argument flush left, r right, and s stretches the text the full length of the box if there is blank space in the argument.
- text, the text in the box.

A width argument can be specified in inches (in), centimeters (cm), points (pt), or relative units such as em or ex (see Sections 5.8.3 and 15.5.2).

The following examples,

```
    \makebox{Short title.}End\\
    \makebox[2in] [1]{Short title.}End\\
    \makebox[2in]{Short title.}End\\
    \makebox[2in][r]{Short title.}End\\
    \makebox[2in][s]{Short title.}End
    typeset as
\Gamma
    Short title.End
    Short title. End
        Short title. End
        Short title.End
    Short title.End
```

The optional width argument, width, can use four length commands:

```
\height \depth \totalheight and \width
```

These are the dimensions of the box that would be produced without the optional width argument.

Here is a simple example. The command

```
\makebox{hello}
```

makes a box of width \width. To typeset hello in a box three times the width, that is, in a box of width $3 \backslash$ width, use the command
\makebox[3\width] \{hello\}
So
start\makebox [3\width] \{hello\}end
typesets as

Γ

start hello end

The formal definition of these four length commands is the following:

- \height is the height of the box above the baseline
- \depth is the depth of the box below the baseline
- \totalheight is the sum of \height and \depth
- \width is the width of the box

There is an interesting variant of the \makebox command. The $\backslash \mathrm{rlap}$ command makes a box and pretends that it is of width zero. For instance,

```
\newcommand{\circwithdot}
    {\mathbin{\rlap{$\mspace{2mu}\cdot$}\hbox{$\circ$}}}
```

defines the command \circwithdot, so you can type

```
$f\circwithdot\varphi$
```

which prints as $f \odot \varphi$. There is also an \llap command.

5.9.2 Frame boxes

Boxed text is very emphatic. For example, Do not touch! is typed as

```
\fbox{Do not touch!}
```

This is a frame box, hence the command \fbox or $\backslash f r a m e b o x$.
Boxed text cannot be broken, so if you want a frame around more than one line of text, you should put the text as the argument of a \parbox command or within a minipage environment (see Section 5.9.3), and then put that into the argument of an \fbox command. For instance,

```
\fbox{\parbox{3in}{Boxed text cannot be broken,
so if you want to frame more than one line
of text, place it in the argument of a
\bsl\texttt{parbox}
command or within a
\texttt{minipage} environment.}}
produces
```

Γ
Boxed text cannot be broken, so if you want to
frame more than one line of text, place it in
the argument of a \parbox command or within
a minipage environment.

The $\backslash \mathrm{bsl}$ command is defined in Section 15.1.1. See Section 8.6 .2 for boxed formulas.

The \framebox command works exactly like \makebox, except that it draws a frame around the box.
\framebox[2in] [l] \{Short title\}
produces
Γ
Short title

You can use this command to typeset the number 1 in a square box, as required by the title of Michael Doob's $T_{E} X$ Starting from 1 [12]:
\framebox\{\makebox[\totalheight]\{1\}\}
which typesets as

```
\Gamma
    1
```

Note that
\framebox[\totalheight]\{1\}
typesets as

Γ

which is not a square box. Indeed, \totalheight is the height of 1, which becomes the width of the box. The total height of the box, however, is the height of the character 1 to which you have to add twice the \backslash fboxsep, the separation between the contents of the box and the frame, defined as 3 points, and twice the \fboxrule, the width of the line, or rule, defined as 0.4 points. These lengths are in general also added to the width of the box, but not in this case, because we forced the width to equal the height of the character.

You can use the \fbox command to frame the name of an author:
\author\{\fbox\{author's name\}\}

5.9.3 Paragraph boxes

A paragraph box works like a paragraph. The text it contains is wrapped around into lines. The width of these lines is set by the user.

The \parbox command typesets the contents of its second argument as a paragraph with a line width supplied as the first argument. The resulting box is handled by LATEX as a single large character. For example, to create a 3 -inch wide column,
Fred Wehrung's new result shows the limitation of E. T. Schmidt's construction, especially for large lattices.
type
\parbox\{3in\}\{Fred Wehrung's new result shows the
limitation of E.
,T. Schmidt's construction, especially for large lattices.\}

Paragraph boxes are especially useful when working within a tabular environment. See the subsection on refinements in Section 6.6 for examples of multiline entries.

The width of the paragraph box can be specified in inches (in), centimeters (cm), points (pt), or the relative measurements em and ex (see Section 5.8.3), among others (see Section 15.5.2 for a complete listing of measurement units).

Tip The \parbox command requires two arguments. Dropping the first argument results in an error message such as

```
! Missing number, treated as zero.
<to be read again>
```

 T
 1.175

Dropping the second argument does not yield an error message but the result is probably not what you intended. The next character is taken as the contents of the \backslash parbox.

Paragraph box refinements

The "character" created by a \parbox command is placed on the line so that its vertical center is aligned with the center of the line. An optional first argument b or t forces the paragraph box to align along its bottom or top. For an example, see Section 6.6. The full syntax of \backslash parbox is
\parbox[alignment][height][inner-alignment]\{width\}\{text\}
Just as for the \makebox command (see Section 5.9.1), the

```
\height \depth \totalheight and \width
```

commands may be used in the height argument instead of a numeric argument.
The inner-alignment argument is the vertical equivalent of the alignment argument for \backslash makebox, determining the position of text within the box and it may be any one of $\mathrm{t}, \mathrm{b}, \mathrm{c}$, or s , denoting top, bottom, centered, or stretched alignment, respectively. When the inner-alignment argument is not specified, it defaults to alignment.

Paragraph box as an environment

The minipage environment is very similar to the \parbox command. It typesets the text in its body using a line width supplied as an argument. It has an optional argument for bottom or top alignment, and the other \parbox refinements also apply. The difference is that the minipage environment can contain displayed text environments discussed in Chapter 6.

The minipage environment can also contain footnotes (see Section 5.5.2) that are displayed within the minipage. See Section 3.2.1 of The ${ }^{A} T E_{E} X$ Companion, 2nd edition [46] for complications that may arise therefrom.

5.9.4 Marginal comments

A variant of the paragraph box, the \backslash marginpar command, allows you to add marginal comments. So
\marginpar\{Do not use this much.\} produces the comment displayed in the margin.

The AMS warning in the book [30] (also displayed here below the marginal comment) is defined as
\marginpar\{\{\Large\%
\textcircled\{\raisebox\{.7pt\}\{\normalsize\textbf A\}\}\}\}
The \textcircled command is discussed in Section 5.4.7, while the \raisebox command is introduced in Section 5.9.6.

Rule ■ Marginal comments and math environments

Do not use marginal comments in equations or multiline math environments.

Tip Avoid using too many marginal comments on any given page-EATEX may have to place some of them on the next page.

If the document is typeset two-sided, then the marginal comments are set in the outside margin. The form

```
\marginpar[left-comment]{right-comment}
```

uses the required argument right-comment when the marginal comment is set in the right margin and the optional argument left-comment when the marginal comment is set in the left margin.

The width of the paragraph box for marginal comments is stored in the length command \marginparwidth (see Section 15.5.2 for length commands). If you want to change it, use

```
\setlength{\marginparwidth}{new_width}
```

as in

```
\setlength{\marginparwidth}{90pt}
```

The default value of this width is set by the document class. If you want to know the present setting, type
\the\marginparwidth
in your document and typeset it, or, in interactive mode (see Sections 15.1.7 and D.4), type

```
*\showthe\marginparwidth
```

($*$ is the interactive prompt).
See Sections 3.2.8 and 4.1 of The $L^{A} T_{E} X$ Companion, 2nd edition [46] for other style parameters pertaining to marginal notes.

5.9.5 Solid boxes

A solid filled box is created with a \rule command. The first argument is the width and the second is the height. For instance, to obtain
end of proof symbol:
\square
type
end of proof symbol: \rule\{1.6ex\}\{1.6ex\}
In fact, this symbol is usually slightly lowered:

```
\Gamma
```

end of proof symbol:

This positioning is done with an optional first argument:
end of proof symbol: \rule[-.23ex]\{1.6ex\}\{1.6ex\}
Here is an example combining \rule with \makebox and \hrulefill:
1 inch: \quad \backslash makebox[1in] $\{\backslash$ rule\{. 4 pt$\}\{4 \mathrm{pt}\} \%$ \hrulefill\rule\{.4pt\}\{4pt\}\}
which produces

1 inch: \qquad

Struts

Solid boxes of zero width are called struts. Struts are invisible, but they force $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ to make room for them, changing the vertical alignment of lines. Standard struts can also be added with the \strut or \mathstrut command. To see how struts work, compare

typed as
$\backslash f b o x\{a b\}$ and $\backslash f$ box $\{\backslash$ strut $a b\}$ and $\backslash f$ box\{\$\mathstrut $\$ a b\}$
Struts are especially useful for fine tuning tables (see Section 6.6, page 139) and formulas (see math struts in Section 8.4).

Rule ■ Zero distance

Opt, 0 in, 0 cm , 0 em all stand for zero width. 0 by itself is not acceptable.

For example, \rule $\{0\}\{1.6 \mathrm{ex}\}$ gives the error message
! Illegal unit of measure (pt inserted).
<to be read again>
h
1.251 \rule\{0\}\{1.6ex\}

If the \rule command has no argument or only one, $\mathrm{LATE}_{\mathrm{E}} \mathrm{X}$ generates an error message. For instance, \rule\{1.6ex\} gives the message

```
! Paragraph ended before \@rule was complete.
```

or
! Missing number, treated as zero.
In the first error message, the reference to \@rule suggests that the problem is with the \rule command. Checking the syntax of the \rule command, you find that an argument is missing. The second error message is more informative, since there is, indeed, a missing number.

5.9.6 Fine tuning boxes

The command
\raisebox\{displacement \}\{text\}
typesets text in a box with a vertical displacement. If displacement is positive, the box is raised; if it is negative, the box is lowered.

The \raisebox command allows us to play games:
fine-\raisebox\{.5ex\}\{tun\}\raisebox\{-.5ex\}\{ing\}
produces fine-tun ${ }_{i n g}$.
The \raisebox command has two optional arguments:
\backslash raisebox\{0ex\}[1.5ex] [0.75ex] \{text $\}$
forces $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to typeset text as if it extended 1.5 ex above and 0.75 ex below the line, resulting in a change in the interline space above and below the line. A simple version of this command, \smash, is discussed in Section 8.4.

In the AMS warning in the book [30] (shown on page 112), the \raisebox command is used to properly center the bold A in the circle:

Text environments

There are three types of text environments in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$:

1. Displayed text environments; text within such an environment usually is typeset with some vertical space around it
2. Text environments that create a "large symbol"
3. Style and size environments

We start by discussing a very important rule about blank lines in displayed text environments. Then we proceed in Section 6.2 to the most often used displayed text environments: lists. We continue with the style and size environments in Section 6.3.

The most important displayed text environments in math are proclamations or the-orem-like structures, proclamations with style, and the proof environment, discussed in detail in Sections 6.4 and 6.5.

The tabular environment discussed in Section 6.6 produces a "large symbol", a table, which is of limited use in math.

In Section 6.7, we discuss the tabbing environment, which is often used for computer code. The legacy environments quote, quotation, and verse are discussed in Section 6.8, along with the verbatim environment, which is often used to display ${ }^{\mathrm{AT}} \mathrm{EX}$ source in a typeset $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document.

6.1 Some general rules for displayed text environments

As you know, blank lines play a special role in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, usually indicating a paragraph break. Since displayed text environments structure the printed display themselves, the rules about blank lines are relaxed somewhat. However, a blank line trailing an environment signifies a new paragraph for the text following the environment.

Rule ■ Blank lines in displayed text environments

1. Blank lines are ignored immediately after \begin\{name\} or immediately before } \end } \{ name \} except in a verbatim environment.
2. A blank line after \end \{name \} forces the text that follows to start a new paragraph. }
3. As a rule, you should not have a blank line before \backslash begin\{name $\}$.
4. The line after any theorem or proof always begins a new paragraph, even if there is no blank line or \backslash par command.

The page breaking commands in Section 5.7.3 apply to text environments, as does the line breaking command $\backslash \backslash$ discussed in Section 5.7.1.

6.2 List environments

${ }^{\mathrm{L}} \mathrm{T} \mathrm{E}$ X provides three list environments: enumerate, itemize, and description. ${ }^{\text {ETEX }} \mathrm{E}$ also provides a generic list environment that can be customized to fit your needs. See Section 15.6 on custom lists.

Most document classes redefine the spacing and some stylistic details of lists, especially since the list environments in the legacy document classes are not very pleasing. In this section, the list environments are formatted as they are by our standard document class, amsart. Throughout the rest of the book, lists are formatted as specified by this book's designer.

6.2.1 Numbered lists

A numbered list is created with the enumerate environment:

This space has the following properties:
(1) Grade 2 Cantor;
(2) Half-smooth Hausdorff;
(3) Metrizably smooth.

Therefore, we can apply the Main Theorem.
typed as

```
\noindent This space has the following properties:
\begin{enumerate}
    \item Grade 2 Cantor\label{Cantor};
    \item Half-smooth Hausdorff\label{Hausdorff};
    \item Metrizably smooth\label{smooth}.
\end{enumerate}
Therefore, we can apply the Main Theorem.
```

Each item is introduced with an - command. The numbers \({ }^{\text {ET }} \mathrm{E} \mathrm{X}\) generates can be labeled and cross-referenced (see Section 10.4.2). This construct can be used in theorems and definitions, for listing conditions or conclusions.

If you use - in the form
- , you get an unnumbered item in the list.

6.2.2 Bulleted lists

A bulleted list is created with the itemize environment:

We set out to accomplish a variety of goals:

- To introduce the concept of smooth functions.
- To show their usefulness in differentiation.
- To point out the efficacy of using smooth functions in Calculus.

L
is typed as

```
\noindent We set out to accomplish a variety of goals:
\begin{itemize}
    \item To introduce the concept of smooth functions.
    \item To show their usefulness in differentiation.
    \item To point out the efficacy of using smooth
        functions in Calculus.
\end{itemize}
```


6.2.3 Captioned lists

In a captioned list each item has a title (caption) specified by the optional argument of the - command. Such lists are created with the description environment:

In this introduction, we describe the basic techniques:
Chopped lattice: a reduced form of a lattice;
Boolean triples: a powerful lattice construction;
Cubic extension: a subdirect power flattening the congruences.
is typed as
\noindent In this introduction, we describe
the basic techniques:
\begin\{description\} }
- a reduced form of a lattice;
- a powerful lattice construction;
- a subdirect power flattening the congruences.
\end\{description\} }

6.2.4 A rule and combinations

There is only one rule you must remember.

Rule ■ List environments

An - command must immediately follow
\begin\{enumerate\}, \begin\{itemize\}, or \begin\{description\}. }

Of course, spaces and line breaks can separate them.
If you break this rule, you get an error message. For instance,
\begin\{description\} }
This is wrong!
- a reduced lattice;
gives the error message
! LaTeX Error: Something's wrong--perhaps a missing
- .
1.105
- a reduced lattice;

If you see this error message, remember the rule for list environments and check for text preceding the first - .

You can nest up to four list environments; for instance,
(1) First item of Level 1.
(a) First item of Level 2
(i) First item of Level 3.
(A) First item of Level 4.
(B) Second item of Level 4.
(ii) Second item of Level 3.
(b) Second item of Level 2.
(2) Second item of Level 1.

Referencing the second item of Level 4: 1(a)iB
which is typed as

```
\begin{enumerate}
    \item First item of Level 1.
    \begin{enumerate}
        \item First item of Level }2
        \begin{enumerate}
            \item First item of Level 3.
            \begin{enumerate}
                \item First item of Level 4.
                    \item Second item of Level 4.\label{level4}
            \end{enumerate}
            \item Second item of Level }3
            \end{enumerate}
            \item Second item of Level 2.
    \end{enumerate}
    \item Second item of Level }1
\end{enumerate}
Referencing the second item of Level 4: \ref{level4}
```

Note that the label level4 collected all four of the counters (see Section 10.4.2).
You can also mix list environments:

```
\Gamma
(1) First item of Level 1.
- First item of Level 2.
(a) First item of Level 3.
- First item of Level 4.
- Second item of Level 4.
(b) Second item of Level 3.
- Second item of Level 2.
(2) Second item of Level 1.
Referencing the second item of Level 4: 1a
which is typed as
\(\backslash\) begin\{enumerate\}
\item First item of Level 1.
\begin\{itemize\} }
\item First item of Level 2.
\begin\{enumerate\} }
\item First item of Level 3.
\begin\{itemize\} }
\item First item of Level 4.
\item Second item of Level 4. \label\{enums\}
\end\{itemize\} }
\item Second item of Level 3.
\end\{enumerate\} }
\item Second item of Level 2.
\end\{itemize\} }
\item Second item of Level 1.
\end\{enumerate\} }
Referencing the second item of Level 4: \ref\{enums\}
```

Now the label enums collects only the two enumerate counters (see Section 10.4.2).
The indentations are, of course, not needed. I use them to keep track of the level of nesting.

In all three types of list environment, the - command may be followed by an optional argument, which is displayed at the beginning of the typeset item:
- Note that for enumerate and itemize the resulting typography may leave something to be desired.

Tip If the text following an - command starts with an opening square bracket, [, then \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) thinks that
- has an optional argument. To prevent this problem from occurring, type [as \{[\}. Similarly, a closing square bracket,], inside the optional argument should be typed as \(]\}\).

Tip You may want to use a list environment solely for the way the items are displayed, without any labels. You can achieve this effect by using - .

You can change the style of the numbers in an enumerate environment by redefining the counter as suggested in Section 15.5.1:
\{\{\normalfont (\roman\{enumi\}) \}\}
The labels then are displayed as (i), (ii), and so on. This modification only works if you do not want to reference these items. If you want the \backslash ref command to work properly, use David Carlisle's enumerate package (see Section 12.3.1). For an example of how to use Carlisle's environment, see Section 15.2.1.

Section 3.3 of The ${ }^{L T} T_{E} X$ Companion, 2nd edition [46] explains how to customize the three list environments and discusses Bernd Schandl's paralist package, which provides a number of new list environments and makes customizing the three legacy list environments much easier. For custom lists, see Section 15.6.

6.3 Style and size environments

There are several text environments that allow you to set font characteristics. They have the same names as their corresponding command declarations:

```
    rmfamily sffamily ttfamily
upshape itshape em slshape scshape
    bfseries
```

For instance,
\begin\{ttfamily\} }
text
\end\{ttfamily\} }
typesets text just like $\{\backslash t t f a m i l y ~ t e x t\}$ would. Remember to use the commanddeclaration names for the environment names, that is, use rmfamily, not textrm and ttfamily, not texttt (see Section 5.6.2). There are also text environments for changing the font size, from tiny to Huge (see Section 5.6.6).

If you are getting overwhelmed by the large number of environments changing style and size, consult Tables 5.6 and 5.7 (see also Section C.3.2).

Horizontal alignment of a paragraph is controlled by the flushleft, flushright, and center environments. Within the flushright and center environments, it is customary to force new lines with the $\backslash \backslash$ command, while in the flushleft environment, you normally allow $\mathrm{EATEX}_{\mathrm{E}}$ to wrap the lines.

These text environments can be used separately or in combination, as in

The simplest text environments set the printing style and size. The commands and the environments have similar names.
typed as

```
\begin{flushright}
    The \begin{bfseries}simplest\end{bfseries}
    text environments set the
    printing style and size.\\
    The commands and the environments have similar names.
\end{flushright}
```

There are command declarations that correspond to these environments:

- centers text
- \raggedright left aligns text
- \raggedleft right aligns text

The effect of one of these commands is almost the same as that of the corresponding environment except that the environment places additional vertical space before and after the displayed paragraphs. For such a command declaration to affect the way a paragraph is formatted, the scope must include the whole paragraph, including the blank line at the end of the paragraph, preferably indicated with a \backslash par command.

The command is used often with the \includegraphics command (see Section 10.4.3).

6.4 Proclamations (theorem-like structures)

Theorems, lemmas, definitions, and so forth are a major part of mathematical writing. In $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, these constructs are typed in displayed text environments called proclamations or theorem-like structures.

In the intrart.tex sample article (see pp. 42-43), there are two theorems, a definition, and a notation. These four environments have similar structures, only their names are different.

In the sampart.tex sample article (see pp. 286-288), there are a number of different proclamations in a variety of styles, with varying degrees of emphasis. Proclamations with style are discussed in Section 6.4.2.

We discuss in Section 4.2.3 the two steps required by proclamations:
Step 1 Define the proclamation with a \newtheorem command in the preamble of the document. For instance, the line

```
\newtheorem{theorem}{Theorem}
```

defines a theorem environment.
Step 2 Invoke the proclamation as an environment in the body of your document. Using the proclamation definition from Step 1, type
\begin\{theorem\} }
My first theorem.
\end\{theorem\} }
to produce a theorem:

Theorem 1. My first theorem.

In the proclamation definition
\newtheorem\{theorem\}\{Theorem\}
the first argument, theorem, is the name of the environment that invokes the theorem. The second argument, Theorem, is the name that is used when the proclamation is typeset. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ numbers the theorems automatically and typesets them with vertical space above and below. The phrase Theorem 1. appears, followed by the theorem itself, which may be emphasized. Of course, the formatting of the theorem depends on the document class and on the proclamation style (see Section 6.4.2).

You may also specify an optional argument,

```
\begin{theorem}[The Fuchs-Schmidt Theorem]
    The statement of the theorem.
\end{theorem}
```

that appears as the name of the theorem:

Theorem 1 (The Fuchs-Schmidt Theorem). The statement of the theorem.
${ }^{\mathrm{E} T} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ is very fussy about how proclamations are defined. For example, in the introductory article intrart.tex (see Section 4.1), if the closing brace is dropped from the end of line 8 ,

```
\newtheorem{definition}{Definition
you get an error message such as
Runaway argument?
{Definition \newtheorem {notation}{Notation}
! Paragraph ended before \@ynthm was complete.
<to be read again>
    \par
1.10
```

Line 10 is the line after the \newtheorem commands. The message conveys the information that something is wrong in the paragraph before line 10 .

If you forget an argument, as in
\newtheorem\{definition\}
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ produces an error message such as
! LaTeX Error: Missing \begin\{document\}. }
1.9 \newtheorem\{n
otation\}\{Notation\}
In the error message, the line
! LaTeX Error: Missing \begin\{document\}. }
usually means that $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ became confused and believes that some text typed in the preamble should be moved past the line

```
\begin{document}
```

The mistake could be anywhere in the preamble above the line AT_{E} indicates. If you encounter such an error message, try to isolate the problem by commenting out parts of the preamble (see Section 5.5.1 and also Section 4.3.1).

Rule ■ Lists in proclamations

If a proclamation starts with a list environment, precede the list by \hfill.

If you do not, as in

```
\begin{definition}\label{D:prime}
    \begin{enumerate}
    \item $u$ is \emph{bold} if $u = x^2$.\label{mi1}
    \item $u$ is \emph{thin} if $u = \sqrt{x}$.\label{mi2}
    \end{enumerate}
\end{definition}
```

your typeset list starts on the first line of the proclamation:

Definition 1. (1) u is bold if $u=x^{2}$.
(2) u is thin if $u=\sqrt{x}$.

If you add the \hfill command,

```
\begin{definition}\hfill
\begin{enumerate}
```

the list in the definition typesets correctly:

Definition 1.

(1) u is bold if $u=x^{2}$.
(2) u is thin if $u=\sqrt{x}$.

Consecutive numbering

If you want to number two sets of proclamations consecutively, you can do so by first defining one proclamation, and then using its name as an optional argument of the second proclamation. For example, to number the lemmas and propositions in your paper consecutively, you type the following two lines in your preamble:

```
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}[lemma]{Proposition}
```

Lemmas and propositions are then consecutively numbered as Lemma 1, Proposition 2, Proposition 3, and so on.

Let me emphasize: The optional argument of a proclamation definition must be the name of a proclamation that has already been defined.

Numbering within a section

The \newtheorem command may also have a different optional argument; it causes $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ to number the lemmas within sections. For example,
\newtheorem\{lemma\}\{Lemma\}[section]
numbers the lemmas in Section 1 as Lemma 1.1 and Lemma 1.2. In Section 2, you have Lemma 2.1 and Lemma 2.2, and so on.

Instead of section, you may use any sectioning command provided by the document class, such as chapter, section, and subsection.

Consecutive numbering and numbering within a section can be combined. For example,
\newtheorem\{lemma\}\{Lemma\}[section]
\newtheorem\{proposition\}[lemma] \{Proposition\}
sets up the lemma and proposition environments so that they are numbered consecutively within sections: Lemma 1.1, Proposition 1.2, Proposition 1.3 and Proposition 2.1, Lemma 2.2, and so on.

6.4.1 The full syntax

The full form of \newtheorem is
\newtheorem\{envname\}[procCounter]\{Name\}[secCounter]
where the two optional arguments are mutually exclusive, and
envname is the name of the environment to be used in the body of the document. For instance, you may use theorem for the envname of a theorem, so that a theorem is typed inside a theorem environment. Of course, envname is just a label; you are free to choose any environment name, such as thm or george (as long as the name is not in use as the name of another command or environment). This argument is also the name of the counter $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ uses to number these text environments.
procCounter is an optional argument. It sets the new proclamation to use the counter of a previously defined proclamation and the two proclamations are consecutively numbered.

Name is the text that is typeset when the proclamation is invoked. So if Theorem is given as Name, then you get Theorem 1, Theorem 2, and so on in your document.
secCounter is an optional argument that causes Name environments to be numbered within the appropriate sectioning units. So if theorem is the envname and section is the secCounter, then in Section 1 you have Theorem 1.1, Theorem 1.2, and so on. In Section 2 you get Theorem 2.1, Theorem 2.2, and so on. Proclamations may be numbered within subsections, sections, chapters, or any other sectioning unit automatically numbered by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

6.4.2 Proclamations with style

You can choose one of three styles for your proclamations by preceding the definitions with the \theoremstyle\{style\} command, where style is one of the following:

- plain, the most emphatic
- definition
- remark, the least emphatic

There are a few extra options, including the \newtheorem* command, an unnumbered version of \newtheorem.

The following commands set the styles in the sampart . tex article (see page 290). The typeset sample article (on pages 286-288) shows how the chosen styles affect the typeset proclamations.
\theoremstyle\{plain\}
\newtheorem\{theorem\}\{Theorem\}
\newtheorem\{corollary\}\{Corollary\}
\newtheorem*\{main\}\{Main Theorem\}
\newtheorem\{lemma\}\{Lemma\}
\newtheorem\{proposition\}\{Proposition\}
\theoremstyle\{definition\}
\newtheorem\{definition\}\{Definition\}
\theoremstyle\{remark\}
\newtheorem*\{notation\}\{Notation\}
A proclamation created by a \newtheorem command has the style of the last \theoremstyle command preceding it. The default style is plain.

Three examples

Here are three sets of proclamation definitions to illustrate different styles and numbering schemes.

Example 1

```
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem] {Lemma}
\newtheorem{definition}[theorem] {Definition}
\newtheorem{corollary}[theorem] {Corollary}
```

In a document with this set of proclamation definitions you can use theorems, lemmas, definitions, and corollaries, typeset in the most emphatic (plain) style. They are all numbered consecutively: Definition 1, Definition 2, Theorem 3, Corollary 4, Lemma 5, Lemma 6, Theorem 7, and so on.

Example 2

```
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem*{main}{Main Theorem}
\newtheorem{definition}{Definition}[section]
\newtheorem{lemma}[definition] {Lemma}
\theoremstyle{definition}
\newtheorem*{Rule}{Rule}
```

In this document you may use theorems, definitions, and lemmas in the most emphatic (plain) style, and unnumbered rules in the less emphatic (definition) style. Definitions and lemmas are numbered consecutively within sections. You may also use the unnumbered Main Theorem. So, for example, you may have Definition 1.1, Definition 1.2, Main Theorem, Rule, Lemma 1.3, Lemma 2.1, Theorem 1, and so on.

Example 3

```
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem*{main}{Main Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\theoremstyle{remark}
\newtheorem*{notation}{Notation}
```

With these proclamation definitions you can use theorems, corollaries, lemmas, and propositions in the most emphatic (plain) style, and an unnumbered Main Theorem. You can have definitions in the less emphatic (definition) style. All are separately numbered. So in the document you may have Definition 1, Definition 2, Main Theorem, Lemma 1, Proposition 1, Lemma 2, Theorem 1, Corollary 1, and so on. You can also have Notations which are unnumbered and typeset in the least emphatic (remark) style.

Number swapping

Proclamations can be numbered on the left, as for instance, 3.2 Theorem. To accomplish this, type the \swapnumbers command before the \newtheorem command corresponding to the proclamation definition you want to change. This command affects all of the proclamation definitions that follow it, so the proclamation definitions in the preamble should be in two groups. The regular ones should be listed first, followed by the \swapnumbers command, then all the proclamations that swap numbers.

Do not swap numbers unless the publisher demands it.

Custom theorem styles

You can define custom theorem styles with the \newtheoremstyle command. You should very seldom do this, the three theorem styles of the document class should suffice. For more detail, see [5].

6.5 Proof environments

A proof is the contents of a proof environment. For instance,

\ulcorner

Proof. This is a proof, delimited by the q.e.d. symbol.
\qquad
typed as
\begin\{proof\} }
This is a proof, delimited by the q.e.d. \backslash symbol. \end\{proof\} }

A proof is set off from the surrounding text with some vertical space. The end of the proof is marked with the symbol \square at the end of the line. There are a few examples of the proof environment in the sampart.tex sample article (pages 286-293).

We start with the same rule for proofs as we have for proclamations on page 126.

Rule ■ Lists in proofs
 If a proof starts with a list environment, precede the list by $\backslash \mathrm{hfill}$.

If you want to suppress the symbol at the end of a proof, give the command

```
\begin{proof}
    \renewcommand{\qedsymbol}{}
\end{proof}
```

To suppress the end of the proof symbol in the whole article, give the
\{\}
command in the preamble.
To substitute another phrase for Proof, such as Necessity, as in
\qquad
Necessity. This is the proof of necessity.
use the proof environment with an optional argument:
\begin\{proof\}[Necessity] }
This is the proof of necessity. \end\{proof\} }

The optional argument may contain a reference, as in
\begin\{proof\}[Proof of Theorem~ } \backslash r e f \{ T : smooth \}]
which might be typeset as

Proof of Theorem 5. This is the proof.

It is easy to make the mistake of placing the optional argument after \begin:

```
\begin[Proof of Theorem~\ref{T:P*}]{proof}
```

You get an error message

```
! LaTeX Error: Bad math environment delimiter.
```

```
1.91 \begin{equation}
    \label{E:cong2}
```

which is not very helpful.
There is a problem with the placement of the q.e.d. symbol if the proof ends with a displayed formula (or a list environment). For instance,

```
\begin{proof}
Now the proof follows from the equation
\[
    a^2 = b^2 + c^2.
\]
\end{proof}
```

typesets as
Γ

Proof. Now the proof follows from the equation

$$
a^{2}=b^{2}+c^{2} .
$$

To correct the placement of the q.e.d. symbol, use the \qedhere command:

```
\begin{proof}
Now the proof follows from the equation
\[
    a^2 = b^2 + c^2.\qedhere
\]
\end{proof}
```

which typesets as
Proof. Now the proof follows from the equation

$$
a^{2}=b^{2}+c^{2} .
$$

6.6 Tabular environments

A tabular environment creates a table that $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ treats as a "large symbol". In particular, a table cannot be broken across pages.

Here is a simple table,

Name	1	2	3
Peter	2.45	34.12	1.00
John	0.00	12.89	3.71
David	2.00	1.85	0.71

looks awful, but it does make the point that the table is just a "large symbol". The table is typed as

```
\begin{tabular}{ | l | r | r | r | }
    \hline
    Name & 1 & 2 & 3 \\ \hline
    Peter & 2.45 & 34.12 & 1.00\\ \hline
    John & 0.00 & 12.89 & 3.71\\ \hline
    David & 2.00 & 1.85 & 0.71\\ \hline
\end{tabular}
```

with no blank line before or after the environment.

This table can be horizontally centered with a center environment (see Section 6.3). It can also be placed within a table environment (see Section 10.4.3). This sets the table off from the surrounding text with vertical space and you can also use the float controls $\mathrm{b}, \mathrm{t}, \mathrm{h}, \mathrm{p}$ to specify where the table should appear (see Section 10.4.3). This also allows you to define a caption, which can be placed before or after the table:

```
\begin{table}
    \begin{center}
        \begin{tabular}{ | l | r | r | r | }
            \hline
            Name & 1 & 2 & 3 \\ \hline
            Peter & 2.45 & 34.12 & 1.00\\ \hline
            John & 0.00 & 12.89 & 3.71\\ \hline
            David & 2.00 & 1.85 & 0.71\\ \hline
            \end{tabular}
            \caption{Tabular table.}\label{Ta:first}
    \end{center}
\end{table}
```

This table is displayed as Table 6.1.

Name	1	2	3
Peter	2.45	34.12	1.00
John	0.00	12.89	3.71
David	2.00	1.85	0.71

Table 6.1: Tabular table.

It can be listed in a list of tables (see Section 10.4.3) and the table number may be referenced using the command $\backslash \operatorname{ref}\{\mathrm{Ta}:$ first $\}$. Note that the label must be typed between the caption and the \end\{table\} command. }

For another example, look at the two tables in the fonttbl.tex file in your samples folder. The first is typed as

\& 0 \& $1 \& 2 \& 3 \& 4 \& 5$ \& $6 \& 7 \& 8 \& 9 \backslash \backslash$ hline

0\& \symbol\{0\} \& \backslash symbol $\{1\} \& \backslash$ symbol $\{2\} \& \backslash$ symbol $\{3\} \&$
\symbol\{4\}\&\symbol\{5\}\&\symbol\{6\}\&\symbol\{7\}\&
\symbol\{8\}\&\symbol\{9\}
\hline

```
120& \symbol{120} &\symbol{121}&\symbol{123}&
\symbol{123}&\symbol{124}&\symbol{125}&\symbol{126}
&\symbol{127} && \\ \hline
\end{tabular}
```

The second table is the same except that the numbers run from 128 to 255 . The typeset table is shown in Section 5.4.4.

Rule
 tabular environments

1. \begin\{tabular\} requires an argument consisting of a character } l , r , or c , mean- ing left, right, or center alignment, for each column, and optionally, the \mid symbols. Each I indicates a vertical line in the typeset table. Spaces in the argument are ignored but can be used for readability.
2. Columns are separated by ampersands (\&) and rows are separated by $\backslash \backslash$.
3. \& absorbs spaces on either side.
4. The $\backslash h l i n e ~ c o m m a n d ~ c r e a t e s ~ a ~ h o r i z o n t a l ~ r u l e ~ i n ~ t h e ~ t y p e s e t ~ t a b l e . ~ I t ~ i s ~ p l a c e d ~$ either at the beginning of the table (after the \begin line) or it must follow a $\backslash \backslash$ command.
5. If you use a horizontal line to finish the table, you must separate the last row of the table from the \backslash hline command with the $\backslash \backslash$ command.
6. \begin\{tabular\} takes an optional argument, } b or t , to specify the bottom or the top vertical alignment of the table with the baseline. The default is center alignment.

Remember to put the optional argument b or t in square brackets, as in

```
\begin{tabular}[b]{ | l | r | r | r | }
```

If you forget to place an \backslash hline command right after $\backslash \backslash$ in the last row, you get an error message such as
! Misplaced \noalign.
\hline ->\noalign

```
{\ifnum 0=`}\fi \hrule \@height
\arrayrulew...
```

1.9 00 \& 1.85 \& 0.71 \hline

More column-formatting commands

The required argument of the tabular environment may contain column-formatting commands of various types.

An @-expression, for instance, © $\mathfrak{@}$.$\} , replaces the space \mathrm{ET}_{\mathrm{E}} \mathrm{X}$ normally inserts between two columns with its argument. For example,

```
\begin{tabular}{r @{.} l}
    3&78\\
    4&261\\
    4
\end{tabular}
```

creates a table with two columns separated by a decimal point. In effect, you get a single, decimal-aligned column:
4.
L

This example is an illustration. You should use David Carlisle's dcolumn package if you need a decimal-aligned column (see Section 12.3.1).

The width of a column depends on the entries in the column by default. You can specify a width by using the p column specifier:

```
p{width}
```

For instance, if you want the first column of Table 6.1 to be 1 inch wide, then type

```
\begin{tabular}{ | p{1in} | r | r | r | }\hline
    Name & 1 & 2 & 3 \\ \hline
    Peter & 2.45 & 34.12 & 1.00\\ \hline
    John & 0.00 & 12.89 & 3.71\\ \hline
    David & 2.00 & 1.85 & 0.71\\ \hline
\end{tabular}
```

which typesets as

Name	1	2	3
Peter	2.45	34.12	1.00
John	0.00	12.89	3.71
David	2.00	1.85	0.71

To center the items in the first column, precede each item with a command (see Section 6.3). Note that the first column is actually somewhat over 1 inch wide, because of the extra space provided around the column boundaries.

The p column specifier can also be used for multiline entries.

Refinements

\hline draws a horizontal line the whole width of the table. \cline $\{a-b\}$ draws a horizontal line from column a to column b. For instance,
\cline\{1-3\} or \cline\{4-4\}
Another useful command is \multicolumn, which is used to span more than one column, for example,
\multicolumn\{3\}\{c\}\{\emph\{absent\}\}
The first argument is the number of columns spanned by the entry, the second is the alignment (an optional vertical line designator I for this row only can also be included), and the third argument is the entry. Note that the entry for the spanned columns is in braces. An example is shown in Table 6.2, typed as follows:
\begin\{table\}[h!] }

Name	1	2	3
Peter	2.45	34.12	1.00
John	absent		
David	2.00	1.85	0.71

Table 6.2: Table with \multicolumn.

Name	Month	Week	Amount
Peter	Jan.	1	1.00
		2	12.78
		3	0.71
		4	15.00
	Total		
John	Jan.	1	12.01
		2	3.10
		3	10.10
	4	0.00	
	Total		
Grand Total			

Table 6.3: Table with \multicolumn and \cline.

```
    \begin{center}
    \begin{tabular}{ | l | r | r | r | } \hline
            Name & 1 & 2 & 3\\ \hline
            Peter & 2.45 & 34.12 & 1.00\\ \hline
            John & \multicolumn{3}{c |}{\emph{absent}}\\
            \hline
            David & 2.00 & 1.85 & 0.71\\ \hline
    \end{tabular}
    \caption{Table with \bsl\texttt{multicolumn}.}
    \label{Ta:mc}
    \end{center}
\end{table}
```

The next example, shown in Table 6.3, uses the \multicolumn and \cline commands together:

```
\begin{table} [t]
    \begin{center}
        \begin{tabular}{ | c c | c | r | } \hline
            Name & Month & Week & Amount\\ \hline
            Peter & Jan. & 1 & 1.00\\ \cline{3-4}
                & & 2 & 12.78\\\cline{3-4}
                & & 3 & 0.71\\ \cline{3-4}
                & & 4 & 15.00\\\cline{2-4}
                & \multicolumn{2}{| l}{Total} & 29.49\\
                \hline
            John & Jan. & 1 & 12.01\\\cline{3-4}
                & & 2 & 3.10\\ \cline{3-4}
                & & 3 & 10.10\\ \cline{3-4}
                & & 4 & 0.00\\ \cline{2-4}
                & \multicolumn{2}{| l}{Total} & 25.21\\
                \hline
            \multicolumn{3}{|l}{Grand Total} & 54.70\\
            \hline
        \end{tabular}
        \caption{Table with \bsl\texttt{multicolumn}
        and \bsl\texttt{cline}.}\label{Ta:multicol+cline}
    \end{center}
\end{table}
```

The \parbox command (see Section 5.9.3) can be used to produce a single multiline entry. Recall that the first argument of \backslash parbox is the width of the box. A p\{\} width designator creates a column in which all entries can be multiline. As an example, to replace Grand Total by Grand Total for Peter and John, type the last line as

```
\multicolumn{3}{l}{ \parbox[b]{10em}{Grand Total\\
```

for Peter and John\} \} \& 54.70
 \hline

Note the use of the bottom alignment option (see Section 5.9.3). The last row of the modified table prints

> Grand Total
> for Peter and John $\quad 54.70$

The spacing above Grand Total is not quite right. It can be adjusted with a strut (see Section 5.9.5),
\parbox[b]\{10em\}\{\strut Grand Total

for Peter and John:\}
Finally, vertical spacing can be adjusted by redefining \arraystretch. For instance, in the table

	Area	Students
5th Grade:	$63.4 \mathrm{~m}^{2}$	22
6th Grade:	$62.0 \mathrm{~m}^{2}$	19
Overall:	$62.6 \mathrm{~m}^{2}$	20

typed as

```
\begin{center}
    \begin{tabular}{|r|c|c|}\hline
            & \textbf{Area} & \textbf{Students}\\\hline
        \textbf{5th Grade}: & 63.4 m\textsuperscript{2} &22\\
        \hline
        \textbf{6th Grade}: & 62.0 m\textsuperscript{2} &19\\
        \hline
        \textbf{Overall}: & 62.6 m\textsuperscript{2} &20\\
        \hline
        \end{tabular}
\end{center}
```

you may find that the rows are too crowded. The vertical spacing may be adjusted by adding the line
\{1.25\}
to the tabular environment. To limit its scope, add it after
\backslash begin\{center\}

The adjusted table is typeset as

	Area	Students
5th Grade:	$63.4 \mathrm{~m}^{2}$	22
6th Grade:	$62.0 \mathrm{~m}^{2}$	19
Overall:	$62.6 \mathrm{~m}^{2}$	20

In some tables, horizontal and vertical lines do not always intersect as desired. Fine control over these intersections is provided by the hhline package (see Section 12.3.1).

Chapter 5 of The ${ }^{A T} T_{E} X$ Companion, 2nd edition [46] deals with tabular material, discussing many extensions, including multipage tables, decimal-point alignment, footnotes in tables, tables within tables, and so on.

6.6.1 Table styles

ETEX can draw double horizontal and vertical lines in tables with ease. As a result, there are far too many double lines in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ tables, resulting in cluttered and confusing tables. The Chicago Manual of Style, 15th edition [11] has almost 80 pages on tables. For simple tables it advocates a simple style, as shown in Table 6.4.
Notice

- the generous space above and below the column heads, which has been achieved with the \backslash rule $[-8 \mathrm{pt}]\{0 \mathrm{pt}\}\{22 \mathrm{pt}\}$ command,
- some extra space above the first line of data, which has been achieved with the \rule\{0pt\}\{14pt\} command,
- the columns of equal width, which has been achieved with p\{70pt\} commands,
- and no vertical lines.

Most tables in this book have been designed according to this style using Simon Fear's booktabs package (see Section E.1).

Table 6.4: Smokers and Nonsmokers, by Sex.

	Smoke	Don't Smoke	Total
Males	1,258	2,104	3,362
Females	1,194	2,752	3.946
Total	2,452	4,856	7,308

6.7 Tabbing environments

Although of limited use for mathematical typesetting, the tabbing environment can be useful for typing algorithms, computer programs, and so forth. ETEX calculates the width of a column in the tabular environment based on the widest entry (see Section 6.6). The tabbing environment allows you to control the width of the columns.

The $\backslash \backslash$ command is the line separator, tab stops are set by $\backslash=$ and are remembered by $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ in the order they are given, and $\backslash>$ moves to the next tab position.

You can easily reset tab positions. For instance, if you are past the second tab position by using $\backslash>$ twice, and there is a third tab position, the $\backslash=$ command resets it.

Lines of comments may be inserted with the $\backslash \mathrm{kill}$ command, see the examples below, or with the \% character. The difference is that a line with \backslash kill can be used to set tab stops, whereas a commented out line cannot.

A simple example:

```
\Gamma
```

 PrintTime
 Block[timing],
 timing = Timing[expr];
 Print [timing[[1]]];
]
 End[]
 typed as

```
{\ttfamily
\begin{tabbing}
    Print\=Time\\
    \>Block\=[{timing},\\
    \>\>timing = Timing[expr];\\
    (careful with initialization)\kill
    \>\>Print[ timing[[1]] ];\\
    \>]\\
    End[]
\end{tabbing}
}% end \ttfamily
```

An alternative method is to use a line to set the tab stops, and then $\backslash \mathrm{kill}$ the line so it does not print:
\{\ttfamily
\begin\{tabbing\} }
\backslash hspace*\{.25in\} $\backslash=$ hspace\{2ex\} $\backslash=$ hhspace\{2ex\} $\backslash=$

```
            \hspace{2ex}\kill
        \> $k := 1$\\
        \> $l_k := 0$; $r_k := 1$\\
        \> loop\\
        \> \> $m_k := (l_k + r_k)/2$\\
        \> \> if $w < m_k$ then\\
        \> \> \> $b_k := 0$; $r_k := m_k$\\
        \> \> else if $w > m_k$ then\\
        \> \> \> $b_k := 1$; $l_k := m_k$\\
        \> \> end if\\
        \> \> $k := k + 1$\\
        \> end loop
\end{tabbing}
}% end \ttfamily
```

which typesets as

$$
\begin{aligned}
& k:=1 \\
& l_{k}:=0 ; r_{k}:=1 \\
& \text { loop } \\
& m_{k}:=\left(l_{k}+r_{k}\right) / 2 \\
& \text { if } w<m_{k} \text { then } \\
& \quad b_{k}:=0 ; r_{k}:=m_{k} \\
& \text { else if } w>m_{k} \text { then } \\
& \quad b_{k}:=1 ; l_{k}:=m_{k} \\
& \text { end if } \\
& k:=k+1 \\
& \text { end loop }
\end{aligned}
$$

Some simple rules:

- There is no $\backslash \backslash$ command on a line containing the \backslash kill command.
- You may set the tabs in a \backslash kill line with \backslash hspace commands.
- The \> command moves to the next tab stop, even if the text you have already typed extends past that stop, which can result in overprinting.
- The tabbing environment has to be typeset with typewriter style font-note the \ttfamily command.

To illustrate the third rule, type

```
\begin{tabbing}
    This is short.\=\\
    This is much longer, \> and jumps back.
\end{tabbing}
```

which typesets as
This is short.
This is muchdodgemps back.
If you do not follow the fourth rule, be careful with your tabbing. You do not really have to use typewriter style font-just beware of the pitfalls.

For more information, please consult Chapter 5 of The $L^{A T} T_{E} X$ Companion, 2nd edition [46].

6.8 Miscellaneous displayed text environments

There are four more displayed text environments, of limited use in math: quote, quotation, verse, and verbatim. We also discuss an inline version of the verbatim environment, the \verb command.

Quotes

The quote environment is used for short (one paragraph) quotations:

It's not that I'm afraid to die. I just don't want to be there when it happens. Woody Allen

Literature is news that STAYS news. Ezra Pound
which is typed as:

```
\begin{quote}
    It's not that I'm afraid to die. I just don't
    want to be there when it happens.
    \emph{Woody Allen}
    Literature is news that STAYS news.
    \emph{Ezra Pound}
\end{quote}
```

Note that multiple quotes are separated by blank lines.

Quotations

In the quotation environment, blank lines mark new paragraphs:

KATH: Can he be present at the birth of his child?
ED: It's all any reasonable child can expect if the dad is present at the conception.

Joe Orton

is typed as

```
\begin{quotation}
    KATH: Can he be present at the birth of his child?
    ED: It's all any reasonable child can expect
    if the dad is present at the conception.
    \begin{flushright}
        \emph{Joe Orton}
    \end{flushright}
\end{quotation}
```


Verses

A verse environment,

I think that I shall never see
A poem lovely as a tree.
Poems are made by fools like me, But only God can make a tree.

Joyce Kilmer
is typed as

```
\begin\{verse\} }
    I think that I shall never see\\
    A poem lovely as a tree.
    Poems are made by fools like me, \\
    But only God can make a tree.
    \begin\{flushright\} }
        \emph\{Joyce Kilmer\}
```

```
    \end{flushright}
\end{verse}
```

Lines are separated by $\backslash \backslash$ and stanzas by blank lines. Long lines are typeset with hanging indent.

Verbatim typesetting

Finally, there is the verbatim text environment. You may need it if you write about ETEX or some other computer program or if you have to include portions of a source file or user input in your typeset work. Most of the displayed source in this book was written in a verbatim environment. For instance, you may have to write to a journal about an article you are proofreading:

Formula (2) in Section 3 should be typed as follows:

```
\begin{equation}
D = \{\, x_0 \mid x_0 => a_1 \,\} \tag{2}
\end{equation}
```

Please make the necessary corrections.

The problem is that if you just type

```
Formula (2) in Section 3 should be typed as follows:
\begin{equation}
    D = \{\, x_0 \mid x_0 => a_1 \,\} \tag{2}
\end{equation}
Please make the necessary corrections.
it typesets as
```

Formula (2) in Section 3 should be typed as follows:

$$
\begin{equation*}
D=\left\{x_{0} \mid x_{0} \Rightarrow a_{1}\right\} \tag{2}
\end{equation*}
$$

Please make the necessary corrections.

To get the proper typeset form, type it as follows:

```
Formula (2) in Section 3 should be typed as follows:
\begin{verbatim}
\begin{equation}
D = \{\, x_0 \mid x_0 => a_1 \,\} \tag{2}
\end{equation}
```

\end\{verbatim\} }
Please make the necessary corrections.

Rule ■ verbatim text environments

A verbatim environment cannot be placed within

- Another verbatim environment
- The argument of a command
- The closing line, \end\{verbatim\}, must be on a line by itself. }

A violation of the first rule results in unmatched environment delimiters. You get an error message such as
! \begin\{document\} ended by \end\{verbatim\}. }
A violation of the second rule gives an error message such as
! Argument of \@xverbatim has an extra \}.

Tip There are two traps to avoid when using the verbatim environment.

1. If the \end\{verbatim\} line starts with spaces, a blank line is added to the typeset } version.
2. Any characters following \end\{verbatim\} on the same line are dropped and you } get a ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ warning.

To illustrate the first trap, type the last two lines of the previous example as follows:
u\end\{verbatim\} }
Please make the necessary corrections.
Then you find an unintended blank line before the last line.
The second trap can be seen if you type the last line of the above example as
\end\{verbatim\} Please make the necessary corrections. }
When typeset, Please make the necessary corrections. does not appear, and you receive a warning

LaTeX Warning: Characters dropped after
'\end\{verbatim\}' on input line } 1 7 .

Several improved versions of the verbatim environment are provided by the verbatim package (see Section 12.3.1). To use this package, include the command inthepreamble.Infact,therulesdiscussedinthissectionarethoseoftheverbatimpackage.undefined

The verbatim environment has some interesting variants and a number of them are discussed in Section 3.4 of The $L^{A T} E_{E} X$ Companion, 2nd edition [46]. For instance, the alltt package, which is part of the standard $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ distribution (see Section 12.3) is used to type the command syntax in this book. See the full syntax of \newtheorem on page 128 for an example.

Verbatim typesetting inline

The verbatim environment also has an inline version called \verb. Here is an example:

Some European e-mail addresses contain
%;
recall that you have to type \verb+ $\backslash \%+$ to get $\backslash \%$.
which prints

Some European e-mail addresses contain \%; recall that you have to type
% to get \%.

The character following the \verb command is a delimiter. In this example I have used + . The argument starts with the character following the delimiter, and it is terminated by the next occurrence of the delimiter. In this example, the argument is $\backslash \%$.

Choose the delimiter character carefully. For instance, if you want to typeset

```
$\sin(\pi/2 + \alpha)$
```

verbatim, and you type

```
\verb+$\sin(\pi/2 + \alpha)$+
```

then you get the error message

```
! Missing $ inserted.
```

<inserted text>
1.5 \verb+\$\sin(\pi/2 + \alpha
)\$+

Indeed, the argument of \backslash verb is $\$ \backslash \sin (\backslash \mathrm{pi} / 2$ because the second + terminates the \verb command. Then $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ tries to typeset \backslash alpha) $\$+$, but cannot because it is not in math mode. Use another character, such as !, in place of + :

```
\verb!$\sin(\pi/2 + \alpha)$!
```


Rule
 verb commands

- The entire \verb command must be on a single line of your source file.
- There can be no space between the \verb command and the delimiter.
- The \verb command cannot appear in the argument of another command.
- The \verb command cannot be used within an aligned math environment.
- Do not use * as a delimiter.

If you violate the first rule, as in
\verb!\$\sin(\pi/2 +
\alpha)\$!
you get the error message
! LaTeX Error: \verb command ended by end of line.
1.6 \verb!\$\sin(\pi/2 +

The \verb command has a *-ed version which prints spaces as \sqcup symbols. For example, \today the is $^{\text {is }}$ typed as \verb*+\today the + .

The \verb command can perform the function of the verbatim environment.
The last error message, which was displayed in a verbatim environment, may be typed as follows:

```
you get the error message\\ [8pt]
\verb|! LaTeX Error: \verb command ended by end of line.|\\
\verb| |\\
\verb|l.6 \verb!$\sin(\pi/2 +|\\[8pt]
```

Rule ■ Simulating verbatim with verb

1. End the line before the verbatim environment with $\backslash \backslash[8 \mathrm{pt}]$.
2. Each line $x x x$ of the verbatim environment is placed in the construct:
```
\verb|xxx|
```

If | occurs in $x x x$, then choose a different delimiter.
3. The last line yyy of the verbatim environment is placed in the construct:

\verb|yyy |
[8pt]
If | occurs in yyy, then choose a different delimiter.

CHAPTER

$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ was designed for typesetting math. I address this topic in detail.
A math formula can be typeset inline, as part of the current paragraph, or displayed, on a separate line or lines with vertical space before and after the formula.

In this and the next chapter we discuss formulas that are set inline or displayed on a single line. In Chapter 9 we address multiline math formulas.

We start with a discussion of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$'s basic math environments (Section 7.1), spacing rules in math (Section 7.2), and continue with the equation environment (Section 7.3). The basic constructs of a formula-arithmetic (including subscripts and superscripts), binomial coefficients, ellipses, integrals, roots, and text-are discussed in detail in Section 7.4. From the basic constructs of that section, you can build very complicated formulas, one step at a time. The process is illustrated in Section 7.4.7.

Delimiters, operators, and math accents are dealt with in Sections 7.5-7.7. In Section 7.8, we discuss three types of stretchable horizontal lines that can be used above or below a formula: braces, bars, and arrows. There are also stretchable arrow math symbols.

Section 7.9 is our Formula Gallery, in which you find a large number of illustrations, some straightforward, some more imaginative, of the math constructs introduced in the preceding sections.

7.1 Math environments

A formula in a ${ }^{\mathrm{AT}} \mathrm{EX}$ document can be typeset inline, like the congruence $a \equiv b(\theta)$ or the integral $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, or displayed, as in

$$
a \equiv b \quad(\theta)
$$

or

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Notice how changing these two formulas from inline to displayed affects their appearance.

Inline and displayed math formulas are typeset using the math environments math and displaymath, respectively. Because math formulas occur so frequently, $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ has abbreviations: the special braces \backslash (and \backslash) or $\$$ are used for the math environment, and $\backslash[$ and $\backslash]$ for the displaymath environment. ${ }^{1}$ So our inline example may be typed as

```
$a \equiv b \pod{0}$
or
\( a \equiv b \pod{0} \)
or
\begin{math}
    a \equiv b \pod{0}
\end{math}
```

The displayed example can be typed as

```
    \[
    \int_{-\infty}^{\infty} e^{-x^{2}} \, dx = \sqrt{\pi}
\]
or
\begin\{displaymath\} }
\int_\{-\infty\}^\{\infty\} e^\{-x^\{2\}\} \\, dx = \sqrt\{\pi\}
\end\{displaymath\} }
```

Using $\$$ as a delimiter for a math environment is a bit of an anomaly, since the same character is used as both an opening and closing delimiter. This dual purpose use makes it more difficult for ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ to diagnose an incorrect use of $\$$. For instance,

[^4]Let $\$ \mathrm{a}$ be a real number, and let $\$ \mathrm{f} \$$ be a function.
would be interpreted by $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ as follows:

- Let is ordinary text
- \$a be a real number, and let \$ is math
- f is interpreted as ordinary text
- \$ be a function. is thought to be a math environment (opened by \$) that should be closed by the next $\$$ in the paragraph

Because the paragraph ends with no more dollar signs appearing, you get the error message
!! Missing \$ inserted.
<inserted text>

$$
\$
$$

1.29
and giving you the line number of the end of the paragraph. This message tells you that $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ would place a $\$$ at the end of the paragraph when it proceeds with the typesetting. Press Return and $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ produces the following:

Г

Let abearealnumber, andletfbeafunction.

The text that ended up in a math environment is run together because math environments ignore spaces (see Section 7.2).

If you use $\backslash($ and $\backslash)$ as special braces for the math environment, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ handles the same mistake more elegantly:

Let $\backslash(\mathrm{a}$ be a real number, and let $\backslash(\mathrm{f} \backslash)$ be a function.
gives the error message

```
! LaTeX Error: Bad math environment delimiter.
```

1. 25 Let $\backslash(a \operatorname{be}$ a real number, and let $\backslash($
f
) be a function.
$\mathrm{IAT}_{\mathrm{E}} X$ realizes that the first \backslash (opens a math environment, so the second \backslash (must be in error. In this case, the line number in the error message is correct.

Throughout this book, like nearly everyone else, I use \$ to delimit inline math.

Rule ■ Math environments

No blank lines are permitted in a math or displaymath environment.

If you violate this rule, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ generates an error message,
! Missing \$ inserted.
<inserted text>
\$
.
1.7
where the line number points inside the environment.
Multiline math environments, such as the examples in Sections 3.4.2-3.4.3, are discussed in Chapter 9.

7.2 Spacing rules

In text, the most important spacing rule is that any number of spaces in the source file equals one space in the typeset document. The spacing rule for math mode is even more straightforward.

Rule ■ Spacing in math

${ }^{E} T_{E} \mathrm{X}$ ignores spaces in math.

In other words, all spacing in math mode is provided by $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$. For instance,
$\$ \mathrm{a}+\mathrm{b}=\mathrm{c} \$$
and
$\$ \mathrm{a}+\mathrm{b}=\mathrm{c} \$$
are both typeset as $a+b=c$.
There are two exceptions to this rule:

1. A space indicating the end of a command name is recognized. For instance, in
\$a \quad b\$
ETEX does not ignore the space between \quad and b.
2. If you switch back to text mode inside a math formula with a \backslash text command (see Section 7.4.6), then the text spacing rules apply in the argument of such a command.

So, LaTeX provides controls for spaces in typeset math. The spaces you type in math do not affect the typeset document. But keep this tip in mind.

Tip Format your source file so that it is easy to read.

When typing a source file, the following is good practice:

- Place \[and \backslash] on lines by themselves.
- Leave spaces before and after binary operations and binary relations, including the equal sign.
- Indent-by three spaces, for example-the contents of environments so they stand out.
- Keep a formula on a single line of the source file, if you can.

Develop your own style of typing math, and stick with it.

Tip The spacing after a comma is different in math and text.

I use the following rule: If the comma could be replaced with the word "and" or "or", then I break the formula and move the comma out of the formula.

Example 1. Type " $a, b \in B$ " as
\$a\$, \$b \in B\$
and not as
\$a, b \in B\$
Example 2. Type " $x=a, b$, or c " as
$\$ \mathrm{x}=\mathrm{a} \$, \$ \mathrm{~b} \$$, or $\$ \mathrm{c} \$$
and not as
\$x = a, b\$, or \$c\$
Compare:
$x=a, b$, or $c \quad$ (typed as $\$ \mathrm{x}=\mathrm{a} \$, \$ \mathrm{~b} \$$, or $\$ \mathrm{c} \$$)
$x=a, b$, or $c \quad$ (typed as $\$ \mathrm{x}=\mathrm{a}, \mathrm{b} \$$, or $\$ \mathrm{c} \$$)
Example 3. Type "for $i=1,2, \ldots, n$ " as
"for $\$ \mathrm{i}=1 \$, \sim \$ 2 \$$, \backslash dots, $\sim \$ n \$ "$

Tip Do not leave a trailing comma in inline math.

So do not type
If $\$ \mathrm{a}=\mathrm{b}, \$$ then
but move the comma out.

7.3 Equations

An equation is a numbered formula displayed on a single typeset line.
Equations are typed in an equation environment. The equation environment and displaymath environment are exactly the same except that the equation environment assigns a number to the displayed formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{1}
\end{equation*}
$$

This example is typed as
\begin\{equation\}\label\{E:int\} }
\int_\{-\infty\}^\{\infty\} e^\{-x^\{2\}\}
, dx = \sqrt\{\pi\}
\end\{equation\} }
The \label command in the equation environment is optional. If you use a \label command, the number assigned to the equation can be referenced with the \ref command. So
see~ $(\backslash \operatorname{ref}\{E:$ int $\})$
typesets as see (1). Even better, use the \eqref command, which places the parentheses automatically:
see \sim leqref $\{E:$ int $\}$
also typesets as see (1). In fact, the \eqref command does more: It typesets the reference upright, even in italicized or slanted text. For more information about crossreferencing, see Section 10.4.2.

Analogously, the \upn command forces the use of upright characters for digits, punctuations, parentheses, etc.

LTEX numbers equations consecutively. As a rule, equations are numbered consecutively throughout articles, whereas in books, numbering starts from 1 at the start of each chapter. You may also choose to have equations numbered within each section(1.1), (1.2), \ldots, in Section 1; (2.1), (2.2), ... in Section 2; and so on-by including the command

```
\numberwithin{equation}{section}
```

in the preamble of your document (see Section 10.2). "Manual control" of numbering is discussed in Section 15.5.1, group numbering in Section 9.4.4.

The $*$-ed form of the equation environment suppresses numbering, so it is equivalent to the displaymath environment (or the special braces $\backslash[$ and $\backslash]$).

Rule ■ Equation environment

No blank lines are permitted within an equation or equation* environment.

If you typeset

```
\begin{equation}\label{E:int}
    \int_{-\infty}^{\infty} e^{-x^{2}} \, dx = \sqrt{\pi}
\end{equation}
```

LATEX generates the familiar, but misleading, error message

```
! Missing $ inserted.
```


7.4 Basic constructs

A formula is built up by combining various basic constructs. This section discusses the following constructs:

- Arithmetic operations
- Subscripts and superscripts
- Binomial coefficients
- Ellipses
- Integrals
- Roots

Read carefully the basic constructs important for your work. Additional constructs are discussed in subsequent sections.

7.4.1 Arithmetic operations

The arithmetic operations are typed pretty much as you would expect. To get $a+b$, $a-b,-a, a / b$, and $a b$, type
$\$ \mathrm{a}+\mathrm{b} \$, \$ \mathrm{a}-\mathrm{b} \$, \$-\mathrm{a} \$, \$ \mathrm{a} / \mathrm{b} \$, \$ \mathrm{a} \mathrm{b} \$$

There are two other forms of multiplication and one of division: $a \cdot b, a \times b$, and $a \div b$. They are typed as follows:

```
$a \cdot b$, $a \times b$, $a \div b$
```

In displayed formulas, fractions are usually typed with the \frac command. To get

$$
\frac{1+2 x}{x+y+x y}
$$

type

$$
\(\backslash f r a c\{1+2 x\}\{x+y+x y\}\)
$$

You can use display-style fractions inline with \dfrac, and inline-style fractions in displayed math environments with \tfrac; for example, $\frac{3+a^{2}}{4+b}$ is typed as $\$ \backslash d f r a c\{3+a \wedge\{2\}\}\{4+b\} \$$ and

$$
\frac{3+a^{2}}{4+b}
$$

is typed as

```
\[
    \tfrac{3 + a^{2}}{4 + b}
\]
```

The \dfrac command is often used in matrices whose entries would look too small with the \backslash frac command. See Formula 20 in the Formula Gallery (Section 7.9) for an example, and Section 8.6.1 for other fraction variants.

Subscripts and superscripts

Subscripts are typed with _ and superscripts with ^. Remember to enclose the subscripted or superscripted expression in braces:

$$
\[
\begin{gathered}
a_{-}\{1\}, \backslash a_{-}\left\{i_{-}\{1\}\right\}, \backslash a^{\wedge}\{2\}, \backslash a a^{\wedge}\left\{b^{\wedge}\{c\}\right\}, \backslash a^{\wedge}\left\{i_{-}\{1\}\right\}, \backslash \\
a_{-}\{i\}+1, \backslash a_{-}\{i+1\}, \backslash a_{-}\{1\} \wedge\{2\}, \backslash a^{\wedge}\{2\} _\{1\}
\end{gathered}
$$

\]

typesets as

$$
a_{1}, a_{i_{1}}, a^{2}, a^{b^{c}}, a^{i_{1}}, a_{i}+1, a_{i+1}, a_{1}^{2}, a_{1}^{2}
$$

For $a^{b^{c}}$, type $\$ a^{\wedge}\{b \wedge\{c\}\} \$$, not $\$ a^{\wedge}\{b\} \wedge\{c\} \$$. If you type the latter, you get the error message
! Double superscript.
Similarly, $a_{b_{c}}$ is typed as \$a_\{b_\{c\}\}\$, not as \$a_\{b\}_\{c\}\$. . .
In many instances, the braces for the subscripts and superscripts could be omitted, but you should type them anyway.

Tip You may safely omit the braces for a subscript or superscript that is a single digit or letter, as in $\$ \mathrm{a}_{-} 1 \$$ and $\$(\mathrm{a}+\mathrm{b})^{\wedge} \mathrm{x} \$$, which are typeset as a_{1} and $(a+b)^{x}$. Be careful, however. If you have to edit $\$ \mathrm{a}_{\mathrm{L}} 1 \$$ to make it a_{12}, then the braces can no longer be omitted, you must type $\$$ a_ $\{12\} \$$ to obtain a_{12} because $\$ a_{-} 12 \$$ typesets as $a_{1} 2$.

There is one symbol that is automatically superscripted in math mode, the prime, that is, '. To get $f^{\prime}(x)$, type $\$ \mathrm{f}^{\prime}(\mathrm{x}) \$$. However, to get $f^{\prime 2}$ you must type
\$f^\{\prime 2\}\$
Typing $\$\left\{f^{\prime}\right\}^{\wedge}\{2\} \$$ results in $f^{\prime 2}$, with the 2 too high; typing it as $\$ \mathrm{f}{ }^{\prime} \wedge\{2\} \$$ causes a double superscript error. Sometimes you may want a symbol to appear superscripted or subscripted by itself, as in the phrase

Γ

use the symbol ${ }^{\dagger}$ to indicate the dualspace
typed as
use the symbol $\$\left\}{ }^{\wedge}\{\backslash\right.$ dagger $\} \$$ to indicate the dualspace
where $\}$ is the empty group. The empty group can be used to separate symbols, to terminate commands, or as the base for subscripting and superscripting.

The $\backslash \mathrm{sb}$ and $\backslash \mathrm{sp}$ commands also typeset subscripts and superscripts, respectively, as in
\$a\sb\{1\} - a\sp\{x + y\}\$
which produces $a_{1}-a^{x+y}$. These commands are seldom used, however, except in the alltt environment (see Section 12.3) and in the Mathematical Reviews of the AMS.

For multiline subscripts and superscripts, see Section 7.6.5.

7.4.2 Binomial coefficients

Binomials are typeset with the \backslash binom command. Here are two examples shown inline, $\binom{a}{b+c}$ and $\left(\frac{\frac{n^{2}-1}{2}}{n+1}\right)$, and displayed:

$$
\binom{a}{b+c} \text { and }\binom{\frac{n^{2}-1}{2}}{n+1}
$$

The latter is typed as

```
\[
    \binom{a}{b + c} \text{ and }
    \binom{\frac{n^{2} - 1}{2}}{n + 1}
\]
```

You can use display-style binomials inline with \dbinom, and inline-style binomials in displayed math environments with \tbinom. For example, $\binom{a}{b+c}$ is typed as $\$ \backslash d b i n o m\{a\}\{b+c\} \$$. See Section 8.6.1 for other variants.

7.4.3 Ellipses

There are two types of ellipsis in math, the low or on-the-line ellipsis, as in

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and the centered ellipsis, as in

$$
x_{1}+x_{2}+\cdots+x_{n}
$$

These two formulas are typed as

```
\[
    F(x_{1}, x_{2}, \dots, x_{n})
\]
and
\[
    x_{1} + x_{2} + \dots + x_{n}
\]
```

${ }^{\text {ET }} \mathrm{E} \mathrm{X}$ uses the symbol following a \backslash dots command to decide whether to use a low or centered ellipsis. If it fails to make the right decision as in

$$
\alpha\left(x_{1}+x_{2}+\ldots\right)
$$

typed as

```
\[
    \alpha(x_{1} + x_{2} + \dots)
\]
```

help $\mathrm{ATE}_{\mathrm{E}} \mathrm{X}$ by giving the command \backslash ldots for low and \backslash cdots for centered ellipsis. So to get the last formula right, type

$$
\backslash[
$$

```
    \alpha(x_{1} + x_{2} + \cdots)
```

\]

and it typesets correctly:

$$
\alpha\left(x_{1}+x_{2}+\cdots\right)
$$

There are five more variants of the \dots command:

- \dotsc, for an ellipsis followed by a comma
- \dotsb, for an ellipsis followed by a binary operation or relation
- \dotsm, for an ellipsis followed by multiplication
- \dotsi, for an ellipsis with integrals
- \dotso, for an "other" ellipsis

These commands not only force the ellipsis to be low or centered, but also adjust the spacing.

See Section 9.7.1 for an example of vertical dots with the \vdots command and diagonal dots with the \ddots command.

7.4.4 Integrals

You have already seen the formula $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$ in both inline and displayed forms in the first section of this chapter. The lower limit is typeset as a subscript and the upper limit is typeset as a superscript. To force the limits below and above the integral symbol, use the \limits command. The \nolimits command does the reverse. To typeset $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, type
\$\int\limits_\{-\infty\}^\{\infty\} $e^{\wedge\{-x \wedge\{2\}\} ~ \, ~ d x ~}$ $=\backslash \mathrm{sqrt}\{\backslash \mathrm{pi}\} \$$

See Section 11.5 for a discussion of the intlimits document class option.
There are five commands to produce variants of the basic integral symbol:
\oint \iint \iiint \iiiint \idotsint
which typeset as

$$
\oint \quad \iint \quad \iiint \quad \iiint \int \quad \int \cdots \int
$$

For complicated bounds, use the \substack command or the subarray environment (see Section 7.6.5).

7.4.5 Roots

The \backslash sqrt command produces a square root, for instance,

```
$\sqrt{5}$ typesets as \sqrt{}{5}
$\sqrt{a + 2b + c^{2}}$ typesets as \sqrt{}{a+2b+\mp@subsup{c}{}{2}}
```

Here is a more interesting example:

$$
\sqrt{1+\sqrt{1+\frac{1}{2} \sqrt{1+\frac{1}{3} \sqrt{1+\frac{1}{4} \sqrt{1+\cdots}}}}}
$$

typed as

```
\[
    \sqrt{1 + \sqrt{1 + \frac{1}{2}\sqrt{1 + \frac{1}{3}
    \sqrt{1 + \frac{1}{4}\sqrt{1 + \cdots}}}}}
\]
```

For n-th roots other than the square root, that is, $n \neq 2$, specify n with an optional argument. To get $\sqrt[3]{5}$, type $\$ \backslash$ sqrt [3] \{5\}\$.

Root refinement

In $\sqrt[g]{5}$, typed as $\$ \backslash$ sqrt $[\mathrm{g}]\{5\} \$$, the placement of g is not very pleasing. $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ provides two additional commands to allow you to adjust the position of g :
\leftroot moves g left-or right with a negative argument
\uproot moves g up-or down with a negative argument
You may prefer one of the following variants:

$\sqrt[g]{5}$	typed as	$\$ \backslash$ sqrt [\leftroot $\{2\} \quad$ uproot $\{2\}$	$\mathrm{g}]\{5\} \$$
$\sqrt[g]{5}$	typed as	$\$ \backslash$ sqrt $[\backslash$ uproot $\{2\} \quad \mathrm{g}]\{5\} \$$	

Experiment with \leftroot and \uproot to find the best spacing.
Note that $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is very finicky with this optional argument. Typing a space after [, as in $\$ \backslash$ sqrt [$\backslash u p r o o t\{2\}$ g] \{5\}\$, gives the error message
! Package amsmath Error: Invalid use of \uproot.
There may also be problems with vertical spacing under the root symbol (see Section 8.4).

7.4.6 Text in math

LATEX allows you to include text in formulas with the \backslash text command. The formula

$$
A=\left\{x \mid x \in X_{i}, \text { for some } i \in I\right\}
$$

is typed as

$$
```
A = \{\, x \mid x \in X_{i}, \text{ for some }
    i \in I \,\}
```
$$

Note that you have to leave space before for and after some inside the argument of \text. The argument of the \text command is always typeset in a single line.

Sometimes it is more convenient to go into math mode within the argument of a \text command rather than end the \text and start another, as in

$$
A=\{x \mid \text { for } x \text { large }\}
$$

which is typed as

```
\[
    A = \{\, x \mid \text{for $x$ large} \,\}
```

\]

The \text command correctly sizes its argument to match the context. The formula

$$
a_{\text {left }}+2=a_{\text {right }}
$$

is typed as

```
\[
    a_{\text{left}} + 2 = a_{\text{right}}
\]
```

Note that \text typesets its argument in the size and shape of the surrounding text. If you want the text in a formula to be typeset in the document font family (see Section 5.6.2) independent of the surrounding text, use

```
\textnormal{ ... }
```

or
\{\normalfont ...\}
For instance, if you have a constant $a_{\text {right }}$, then in a theorem:
Theorem 1. The constant $a_{\text {right }}$ is recursive in a.
The subscript is wrong. To get it right, type the constant as

```
$a_{\normalfont\text{right}}$
```

Now the theorem typesets as
Theorem 1. The constant $a_{\text {right }}$ is recursive in a.
Any of the text font commands with arguments (see Section 5.6.3) can also be used in math formulas. For instance, \textbf uses the size and shape of the surrounding text to typeset its argument in bold (extended).

7.4.7 Building a formula step-by-step

It is easy to build up complex formulas from the components described in this section.
Try the formula

$$
\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i, i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]} \frac{\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}
$$

Build this formula in several steps. Create a new file in your work folder. Name it formula.tex, type in the following lines, and save it:

```
% File: formula.tex
```

\documentclass\{amsart\}\usepackage\{amssymb,latexsym\}\begin\{document\}}\end\{document\}}undefinedundefinedundefinedundefinedundefined

At present, the file has an empty document environment. Type each part of the formula as an inline or displayed formula within this environment so that you can typeset the document and check for errors.

Step 1 We start with $\left[\frac{n}{2}\right]$. Type the following line into formula.tex:
\$\left[\frac\{n\}\{2\} \right]\$
and test it by typesetting the document.
Step 2 Now you can do the sum

$$
\sum_{i=1}^{\left[\frac{n}{2}\right]}
$$

For the superscript, you can copy and paste the formula created in Step 1 (without the dollar signs), so that you have

$$
\backslash[
$$

```
    \sum_{i = 1}^{ \left[ \frac{n}{2} \right] }
```

\]

Step 3 Next, do the two formulas in the binomial

$$
x_{i, i+1}^{i^{2}} \quad\left[\frac{i+3}{3}\right]
$$

Type them as separate formulas in formula.tex:

$$
\[
x_{-}\{i, i+1\} へ\{i \wedge\{2\}\} \backslash q q u a d \backslash l e f t[\backslash f r a c\{i+3\}\{3\} \backslash r i g h t]
$$

Step 4 Now it is easy to do the binomial. Piece together the following formula by copying and pasting the previous formulas and dropping the \qquad command:

```
\[
    \binom{x_{i,i + 1}^{i^{2}}}{\left[\frac{i + 3}{3}\right]}
```

\]

which typesets as

$$
\binom{x_{i, i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]}
$$

Step 5 Next, type the formula under the square root, $\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)$:
$\$ \backslash \operatorname{mu}(i) \wedge\{\backslash f r a c\{3\}\{2\}\}(i \wedge\{2\}-1) \$$
and then the square root, $\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}$:
$\$ \backslash \operatorname{sqrt}\{\backslash \operatorname{mu}(i) \wedge\{\backslash f r a c\{3\}\{2\}\}(i \wedge\{2\}-1)\} \$$

Step 6 The two cube roots, $\sqrt[3]{\rho(i)-2}$ and $\sqrt[3]{\rho(i)-1}$, are easy to type:
\$\sqrt[3]\{ \backslash rho(i) - 2 \}\$ $\$ \backslash$ sqrt[3]\{ \backslash rho(i) - 1 \}\$

Step 7 Now the fraction

$$
\frac{\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}
$$

is typed, copied, and pasted together as

```
\[
    \frac{ \sqrt{ \mu(i)^{ \frac{3}{2}} (i^{2} -1) } }
    { \sqrt[3]{\rho(i) - 2} + \sqrt[3]{\rho(i) - 1} }
```

\]

Step 8 Finally, the whole formula,

$$
\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i, i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]} \frac{\sqrt{\mu(i)^{\frac{3}{2}}\left(i^{2}-1\right)}}{\sqrt[3]{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}
$$

is formed by copying and pasting the pieces together, leaving only one pair of displayed math delimiters:

```
\[
    \sum_{i = 1}^{ \left[ \frac{n}{2} \right] }
    \binom{ x_{i, i + 1}^{i^{2}} }
            { \left[ \frac{i + 3}{3} \right] }
    \frac{ \sqrt{ \mu(i)^{ \frac{3}{2}} (i^{2} - 1) } }
            {\sqrt[3]{\rho(i)-2} + \sqrt[3]{\rho(i) - 1}}
\]
```

Note the use of

- Hierarchical indentation, to keep track of the structure of the formula
- Spacing to help highlight the braces-some text editors help you balance braces
- Separate lines for the various pieces of formulas that are more than a line long

It is to your advantage to keep your source file readable. $\mathrm{ETE}_{\mathrm{E}} \mathrm{X}$ does not care how its input is formatted, and would happily accept the following:

```
\[\sum_{i=1}^{\left[\frac{n}{2}\right]}\binom{x_{i,i+1}
~{i^{2}}}{\left[\frac{i+3}{3}\right]}\frac{\sqrt{\mu(i)
`{\frac{3}{2}}(i^{2}-1)}}{\sqrt[3]{\rho(i)-2}+\sqrt [3]
{\rho(i)-1}}\]
```

But this haphazard style not only makes it more difficult for your coauthors or editor to work with your source file, it also makes finding mistakes difficult. Try to find the error in the next version:

```
\[\sum_{i=1}^{\left[\frac{n}{2}\right]}
\binom{x_{i,i+1}^{i^{2}}}{\left[\frac{i+3}{3}\right]}
\frac{\sqrt{\\mu(i)^{\frac{3}{2}}}(i^{2}-1)}}{\sqrt[3]
{\rho(i)-2}+\sqrt[3]{\rho(i)-1}}\]
```

Answer: \frac\{3\}\{2 should be followed by \}\} and not by \}\}\}.

7.5 Delimiters

Delimiters are used to enclose some subformulas. In the following formula we use two delimiters: parentheses and square brackets: $\$[(\mathrm{a} * \mathrm{~b})+(\mathrm{c} * \mathrm{~d})]^{\wedge} 2 \$$; this typesets as $[(a * b)+(c * d)]^{2}$. ETEX knows that parentheses and square brackets are delimiters, and spaces them accordingly.

The standard delimiters are shown in Table 7.1.
Note that delimiters are math symbols with special spacing rules and you can use them in any way you please, not only in pairs. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ does not stop you from typing \uparrow (x$)]$, which typesets as $\uparrow(x)$].

Observe the difference in spacing between $\|a\|$ and $\|a\|$. The first, $\|a\|$, was typed incorrectly as $\$ \|$ a $\| \$$. As a result, the vertical bars are too far apart. The second

Name	Type	Typeset	
left parenthesis	((
right parenthesis))	
left bracket	[or \lbrack		
right bracket] or \rbrack	,	
left brace	$\backslash\{$ or \lbrace	\{	
right brace			
$or \rbrace }$	\}		
backslash	\backslash backslash	1	
forward slash	/	1	
left angle bracket	\langle	\langle	
right angle bracket	\rangle)	
vertical line	\| or \vert		
double vertical line	\। or \Vert	\|	
left floor	\lfloor	\|	
right floor	\rfloor		
left ceiling	$\backslash l$ ceil		
right ceiling	\rceil	1	
upward	\uparrow	\uparrow	
double upward	\Uparrow	介	
downward	\downarrow	\downarrow	
double downward	\Downarrow	\Downarrow	
up-and-down	\updownarrow	\downarrow	
double up-and-down	\Updownarrow	介	
upper-left corner	\ulcorner	\ulcorner	
upper-right corner	\urcorner	\urcorner	
lower-left corner	\llcorner	\llcorner	
lower-right corner	\lrcorner	\lrcorner	

Table 7.1: Standard delimiters.
was typed correctly using the appropriate delimiter commands: $\$ \backslash \mid$ a $\backslash \mid \$$. Here they are again side-by-side, enlarged: $\|a\|\|a\|$.

7.5.1 Stretching delimiters

All delimiters, except the four "corners", can stretch to enclose the subformula. For example,

$$
\left(\frac{1}{2}\right)^{\alpha}
$$

is typed as

$$
```
    \left( \frac{1}{2} \right)^{\alpha}
```
$$

The \backslash left and \backslash right commands instruct $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to stretch the parentheses.
The general construction is
\left delim1 and \right delim2
where delim1 and delim2 are chosen from Table 7.1. They are usually, but not always, a matching pair-see the examples below. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ inspects the formula between the \left and \right commands and decides what size delimiters to use. The \left } and \right commands must be paired in order for ETEX to know the extent of the material to be vertically measured. However, the delimiters need not be the same.

If you want to stretch a single delimiter, you have to pair it with a blank delimiter, represented by the \left. and \right. commands.

Here are some examples of stretching delimiters:

$$
\left|\frac{a+b}{2}\right|, \quad\left\|A^{2}\right\|, \quad\left(\frac{a}{2}, b\right],\left.\quad F(x)\right|_{a} ^{b}
$$

typed as

```
\[
    \left| \frac{a + b}{2} \right|, \quad
    \left\| A^{2} \right\|, \quad
    \left( \frac{a}{2}, b \right], \quad
    \left. F(x) \right|_{a}^{b}
\]
```

There are also two convenient abbreviations:
\left< for \left\langle
\right> for \right\rangle
The \left and \right commands have one more use. For the delimiters I, \।, and all the arrows, the same symbol represents the left and right delimiters, which can sometimes cause problems as in Example 2 in Section 8.1.4. In such cases, you should use the \left and $\backslash r i g h t ~ c o m m a n d s ~ t o ~ t e l l ~ L T T E X ~ w h e t h e r ~ t h e ~ d e l i m i t e r ~ i s ~ a ~ l e f t ~ o r ~$ a right delimiter. $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ also provides the \lvert and \backslash rvert for \mid as left and right delimiter, and \lVert and $\backslash r$ Vert for $\backslash ।$.

7.5.2 Delimiters that do not stretch

${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ provides the $\backslash \mathrm{big}, \backslash \mathrm{Big}, \backslash$ bigg, and \backslash Bigg commands to produce delimiters of larger sizes. These delimiters do not stretch. For example,

```
\[
    (\quad \big(\quad \Big(\quad \bigg(\quad \Bigg(
\]
```

typesets as

$$
\operatorname{l}(\quad)
$$

${ }^{\mathrm{L}} \mathrm{TE}_{\mathrm{E}} \mathrm{X}$ also provides the more specific
\backslash bigl, \Bigl, \biggl, \Biggl, \bigr, \Bigr, \biggr, and \Biggr
commands to produce larger left and right delimiters.
For integral evaluation, you can choose one of the following:

$$
\left.\left.\left.F(x)\right|_{a} ^{b} \quad F(x)\right|_{a} ^{b} \quad F(x)\right|_{a} ^{b}
$$

typed as

```
\[
    F(x) |^{b}_{a} \quad
    F(x) \bigr \^{b}_{a} \quad
    F(x) \Bigr|^{b}_{a}
\]
```


7.5.3 Limitations of stretching

In a number of situations the stretching done by $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ is not ideal, so you should use a larger sized non-stretching variant. Here are some typical examples:

1. Large operators

```
\[
    \left[ \sum_i a_i \right]^{1/p} \quad
        \biggl[\sum_i a_i \biggr]^{1/p}
```

\]

typesets as

$$
\left[\sum_{i} a_{i}\right]^{1 / p}\left[\sum_{i} a_{i}\right]^{1 / p}
$$

You may prefer the second version with \backslash biggl [and \backslash biggr].

2. Groupings

```
\[
    \left( (a_1 b_1) - (a_2 b_2) \right)
    \left( (a_2 b_1) + (a_1 b_2) \right)
    \quad
```

```
    \bigl( (a_1 b_1) - (a_2 b_2) \bigr)
    \bigl( (a_2 b_1) + (a_1 b_2) \bigr)
\]
```

typesets as

$$
\left(\left(a_{1} b_{1}\right)-\left(a_{2} b_{2}\right)\right)\left(\left(a_{2} b_{1}\right)+\left(a_{1} b_{2}\right)\right) \quad\left(\left(a_{1} b_{1}\right)-\left(a_{2} b_{2}\right)\right)\left(\left(a_{2} b_{1}\right)+\left(a_{1} b_{2}\right)\right)
$$

You may prefer the clearer groupings provided by $\backslash \mathrm{bigl}$ (and $\backslash \mathrm{bigr}$).

3. Inline formulas

The delimiters produced by \left and \backslash right use too much interline space in $\left|\frac{b^{\prime}}{d^{\prime}}\right|$, typed as
\left\lvert \frac\{b'\}\{d'\} \right\rvert
Use \backslash bigl and \backslash bigr to produce delimiters that fit within the normal line spacing: $\left|\frac{b^{\prime}}{d^{\prime}}\right|$, typed as
\bigl\lvert \frac\{b'\}\{d'\} \bigr\rvert

7.5.4 Delimiters as binary relations

The symbol | can be used as a delimiter, as in $|x+y|$, and also as a binary relation, as in $\left\{x \in \mathcal{R} \mid x^{2} \leq 2\right\}$. As a binary relation it is typed as \backslash mid. The previous formula is typed as
$\$ \backslash\{\backslash, x \backslash m i d x \wedge\{2\} \backslash$ leq $2 \backslash, \backslash\} \$$
\bigm and \biggm produce larger variants, with spacing on either side like binary relations. For example,

$$
\left\{x \mid \int_{0}^{x} t^{2} d t \leq 5\right\}
$$

is typed as

```
\[
    \(\backslash\) left \(\backslash\left\{\backslash, \mathrm{x} \backslash\right.\) biggm \(\mid \backslash i n t \_\{0\} \wedge x\) t^\{2\}\, dt\leq 5\,\right } \backslash \}
\]
```


7.6 Operators

You cannot just type sin x to typeset the sine function in math mode. Indeed,
\$sin x \$
produces $\sin x$ instead of $\sin x$, as you intended. Type this function as

```
$\sin x$
```

The $\backslash \sin$ command prints sin with the proper style and spacing. ETEX calls $\backslash \sin$ an operator or log-like function.

7.6.1 Operator tables

There are two types of operators:

1. Operators without limits, such as \backslash sin
2. Operators with limits, such as \lim, that take a subscript in inline mode and a "limit" in displayed math mode. For example, $\lim _{x \rightarrow 0} f(x)=1$ is typed as
$\$ \backslash$ lim_ $^{2} \mathrm{x}$ \to 0$\} \mathrm{f}(\mathrm{x})=1 \$$
The same formula displayed,

$$
\lim _{x \rightarrow 0} f(x)=1
$$

is typed as

```
\[
    \lim_{x \to 0} f(x) = 1
\]
```

The operators are listed in Tables 7.2 and 7.3 (see also Section B.6). The entries in the last two rows of Table 7.3 can be illustrated by

$$
\varliminf_{x \rightarrow 0} \varlimsup_{x \rightarrow 0}^{\lim _{x}} \underset{x \rightarrow 0}{\underset{x \rightarrow 0}{\longrightarrow}} \underset{x}{\underset{x \rightarrow 0}{\lim }}
$$

which are typed as

```
\[
    \varliminf_{x \to 0} \quad \varlimsup_{x \to 0} \quad
    \varinjlim_{x \to 0} \quad \varprojlim_{x \to 0}
```

\]

The following examples illustrate some more entries from Table 7.3:

$$
\underset{x \rightarrow 0}{\operatorname{inj} \lim } \quad \underset{x \rightarrow 0}{\liminf } \quad \underset{x \rightarrow 0}{\limsup } \quad \underset{x \rightarrow 0}{\text { proj } \lim }
$$

These operators were typed as

```
\[
    \injlim_{x \to 0} \quad \liminf_{x \to 0} \quad
    \limsup_{x \to 0} \quad \projlim_{x \to 0}
\]
```

You can force the limits in a displayed formula into the subscript position with the \nolimits command. For example, the formulas

$$
\text { inj } \lim _{x \rightarrow 0} \quad \liminf x_{x \rightarrow 0} \quad \lim \sup _{x \rightarrow 0} \quad \text { proj } \lim _{x \rightarrow 0}
$$

are typed as
\
\injlim\nolimits_\{x \to 0\} \quad
\liminf\nolimits_\{x \to 0\} \quad
\limsup\nolimits_\{x \to 0\} \quad
\projlim\nolimits_\{x \to 0\}
\]

Type	Typeset	Type	Typeset	Type	Typeset	Type	Typeset
$\backslash \mathrm{arccos}$	arccos	\cot	cot	\hom	hom	\backslash sin	sin
$\backslash \arcsin$	\arcsin	\backslash coth	coth	\ker	ker	\backslash sinh	sinh
\arctan	arctan	\csc	csc	$\backslash \mathrm{lg}$	lg	\tan	\tan
\arg	arg	$\backslash \mathrm{deg}$	deg	$\backslash \mathrm{ln}$	\ln	$\backslash t a n h$	tanh
\cos	cos	\backslash dim	dim	$\backslash \mathrm{log}$	\log		
$\backslash \mathrm{cosh}$	cosh	\exp	\exp	\sec	sec		

Table 7.2: Operators without limits.

Type	Typeset	Type	Typeset
\backslash det	det	\limsup	limsup
$\backslash \mathrm{gcd}$	gcd	\backslash max	max
\inf	inf	\backslash min	min
\lim	\lim	$\backslash \mathrm{Pr}$	Pr
$\backslash \mathrm{liminf}$	$\lim \inf$	\backslash sup	sup
\injlim	inj lim	\projlim	proj lim
\varliminf	$\underline{\text { lim }}$	\varlimsup	\varlimsup
\varinjlim	\lim	\varprojlim	\lim

Table 7.3: Operators with limits.

7.6.2 Defining operators

The powerful \DeclareMathOperator command defines a new operator:
\DeclareMathOperator\{\opCommand\}\{opName\}
Invoke the new operator with \opCommand, which is then typeset with opName.
The \backslash DeclareMathOperator command must be placed in the preamble. For example, to define the operator Truncat, invoked by the command \backslash Trunc, place this in the preamble:
\DeclareMathOperator\{\Trunc\}\{Truncat\}
An operator is typeset in math roman with a little space after it, so $\$ \backslash$ Trunc $A \$$ typesets as Truncat A.

The second argument is typeset in math mode but - and * are typeset as they would be in text. Here are some more examples. Define in the preamble two operators:

```
\DeclareMathOperator{\Trone}{Trunc_{1}}
\DeclareMathOperator{\Ststar}{Star-one*}
```

Then in the body of the article
$\$ \backslash$ Trone $\mathbf{A} \$$ is typeset as $\operatorname{Truncat}_{1} A$
$\$ \backslash$ Ststar $\mathrm{A} \$$ is typeset as Star-one* A
To define an operator with limits, use the $*$-ed form

```
\DeclareMathOperator*{\doublesum}{\sum\sum}
```

and then (see Section 7.6.5 for multiline subscripts)

$$
\doublesum_\{ \(\backslash\) begin\{subarray\}\{1\}
 \(i^{\wedge} 2+j^{\wedge} 2=50 \backslash \backslash\)
 i,\ j \leq 10
 \end\{subarray\}\} }
 \(\backslash f r a c\left\{x^{\wedge} i+y^{\wedge} j\right\}\{(i+j)!\}\)
$$

typesets as

$$
\sum_{\substack{i^{2}+j^{2}=50 \\ i, j \leq 10}} \frac{x^{i}+y^{j}}{(i+j)!}
$$

7.6.3 Congruences

\backslash mod is a special operator used for congruences. Congruences are usually typeset using the $\backslash \operatorname{pmod}$ or \backslash pod variant. There is also the \backslash bmod command, which is used as a binary operation. All four commands are shown in Figure 7.4.

See Sections 15.1.2 and 15.1.8 for a discussion of related user-defined commands.

Type	Typeset
\$a \equiv v \mod\{\theta\}\$	$a \equiv v \bmod \theta$
\$a \bmod b\$	$a \bmod b$
\$a \equiv v \pmod\{\theta\}\$	$a \equiv v(\bmod \theta)$
\$a \equiv v \pod\{\theta\}\$	$a \equiv v(\theta)$

Table 7.4: Congruences.

7.6.4 Large operators

Here is a sum typeset inline, $\sum_{i=1}^{n} x_{i}^{2}$, and displayed,

$$
\sum_{i=1}^{n} x_{i}^{2}
$$

In the latter form, the sum symbol is larger. Operators that behave in this way are called large operators. Table 7.5 gives a complete list of large operators.

You can use the \nolimits command if you wish to show the limits of large operators as subscripts and superscripts in a displayed math environment.

The formula

$$
\bigsqcup_{\mathfrak{m}} X=a
$$

is typed as

```
\[
    \bigsqcup\nolimits_{ \mathfrak{m} } X = a
\]
```

You can use the \limits command if you wish to show the limits of large operators below and above the operator symbol in an inline math environment. For example, $\bigsqcup_{\mathfrak{m}} X=a$ is typed as
\$ $\left.{ }^{\text {bigsqcup } \backslash \text { limits_\{ } \backslash \text { mathfrak }\{m\}}\right\}$
Sums and products are very important constructs. The examples

$$
\frac{z^{d}-z_{0}^{d}}{z-z_{0}}=\sum_{k=1}^{d} z_{0}^{k-1} z^{d-k} \quad \text { and } \quad\left(T^{n}\right)^{\prime}\left(x_{0}\right)=\prod_{k=0}^{n-1} T^{\prime}\left(x_{k}\right)
$$

are typed as

```
\[
    \frac{z^{d} - z_{0}^{d}}
        {z - z_{0}} =
```

Type	Inline	Displayed
\int_\{a\}へ\{b\}	\int_{a}^{b}	\int_{a}^{b}
\oint_\{a\}^\{b\}	\oint_{a}^{b}	\oint_{a}^{b}
\iint_\{a\}^\{b\}	\iint_{a}^{b}	\iint_{a}^{b}
\iiint_\{a\}^\{b\}	\iiint_{a}^{b}	\iiint_{a}^{b}
\iiiint_\{a\}^\{b\}	$\iiint \int_{a}^{b}$	$\iiint \int_{a}^{b}$
\idotsint_\{a\}^\{b\}	$\int \cdots \int_{a}^{b}$	$\int \cdots \int_{a}^{b}$
$\backslash p r o d _\{i=1\}^{\wedge}$ \{n\}	$\prod_{i=1}^{n}$	\prod^{n}
\coprod_\{i=1\}^\{n\}	$\coprod_{i=1}^{n}$	$\begin{aligned} & \substack{i=1 \\ n \\ \coprod^{1}} \end{aligned}$
\bigcap_\{i=1\}^\{n\}	$\bigcap_{i=1}^{n}$	$\bigcap_{i=1}^{i=1}$
\bigcup_\{i=1\}^\{n\}	$\bigcup_{i=1}^{n}$	\bigcup^{n}
\bigwedge_\{i=1\}^\{n\}	$\bigwedge_{i=1}^{n}$	$\bigwedge_{i=1}^{i=1}$
\bigvee_\{i=1\}^\{n\}	$\bigvee_{i=1}^{n}$	$\bigvee_{i=1}^{n}$
\bigsqcup_\{i=1\}^\{n\}	$\bigsqcup_{i=1}^{n}$	$\bigsqcup_{i=1}^{\square}$
\biguplus_\{i=1\}^\{n\}	$\biguplus_{i=1}^{n}$	$\biguplus_{\substack{i=1 \\ n}}$
\bigotimes_\{i=1\}^\{n\}	$\bigotimes_{i=1}^{n}$	$\bigotimes_{i=1}^{n}$
\bigoplus_\{i=1\}^\{n\}	$\bigoplus_{i=1}^{n}$	$\bigoplus_{\substack{i=1 \\ n}}$
\backslash bigodot_\{i=1\}^\{n\}	$\bigodot_{i=1}^{n}$	$\bigodot_{\substack{i=1 \\ n}}$
\backslash sum_\{i=1\}^\{n\}	$\sum_{i=1}^{n}$	$\sum_{i=1}$

Table 7.5: Large operators.

```
    \sum_{k = 1}^{d} z_{0}^{k - 1} z^{d - k}
    \text{\quad and\quad}
    (T^{n})'(x_{0}) = \prod_{k=0}^{n - 1} T'(x_{k})
\]
```


7.6.5 Multiline subscripts and superscripts

The \substack command provides multiline limits for large operators. For instance,

$$
\sum_{\substack{i<n \\ i \text { even }}} x_{i}^{2}
$$

is typed as

```
\[
    \sum_{ \substack{ i < n\\
    i \text{ even} } }
    x_{i}^{2}
\]
```

There is only one rule to remember. Use the line separator command $\backslash \backslash$. You can use the \substack command wherever subscripts or superscripts are used.

The lines are centered by \substack, so if you want them set flush left, as in

$$
\sum_{\substack{i<n \\ i \text { even }}} x_{i}^{2}
$$

then use the subarray environment with the argument 1 :

```
\[
    \sum_{ \begin{subarray}{l}
            i < n\\
            i \text{ even}
            \end{subarray} }
    x_{i}^{2}
\]
```

See Section 7.6.2 for another example.

7.7 Math accents

The accents used in text (see Section 5.4.7) cannot be used in math formulas. For accents in formulas a separate set of commands is provided. All math accents are shown in Table 7.6 (see also Section B.8). The amsxtra package is needed for the accents in the second column. To use them, make sure to place the line
m{a}\backslash\)spbreve$\backslash\mathrm{b}\backslash$spddot$\backslash\mathrm{c}\backslash$sptilde$\$$typesetsas$a^{\sim}b^{*}c^{\sim}$.undefined

You can also use double accents, such as

\[

\hat\{\hat\{A\}\}
\]

which typesets as $\hat{\hat{A}}$.
The two "wide" varieties, \widehat and \widetilde, expand to fit the symbols (their arguments) covered: $\widehat{A}, \widehat{a b}, \widehat{i i i}, \widehat{a i a i}, \widehat{i i i i i}$, and $\widetilde{A}, \widetilde{a b}, \overparen{i i i}, \widehat{a i a i}, \widehat{i i i i i}$ (the last example is typed as $\$ \backslash$ widetilde\{iiiii\} $\$$). If the base is too wide, the accent is centered:

$A \widehat{B C D} E$

The "sp" commands, provided by the amsxtra package, are used for superscripts, as illustrated in Table 7.6. If you use a lot of accented characters, you should appreciate user-defined commands (see Section 15.1.1).

Notice the difference between \bar{a} and \bar{a}, typed as
\$\bar\{a\}\$ \$\overline\{a\}\$

		amsxtra	
Type	Typeset	Type	Typeset
\acute\{a\}	á		
$\backslash \mathrm{bar}\{\mathrm{a}\}$	\bar{a}		
\breve\{a\}	\breve{a}	\spbreve	\checkmark
\backslash check\{a\}	\check{a}	\spcheck	v
$\backslash \operatorname{dot}\{\mathrm{a}\}$	\dot{a}	\spdot	,
\backslash ddot a \}	\ddot{a}	\backslash spddot	.
\backslash dddot\{a\}	\dddot{a}	\spdddot	\ldots
\backslash ddddot\{a\}	\dddot{a}		
\grave\{a\}	\grave{a}		
$\backslash \mathrm{hat}\{\mathrm{a}\}$	â		
\widehat\{a\}	\widehat{a}	\sphat	-
\backslash mathring\{a\}	$\stackrel{\circ}{\text { a }}$		
\backslash tilde\{a\}	a		
\backslash widetilde\{a\}	\widetilde{a}	\sptilde	\sim
\vec\{a\}	\vec{a}		

Table 7.6: Math accents.

For other examples of the \overline command, see Section 7.8.2.
To use an arbitrary symbol as an accent or to create "underaccents", use Javier Bezos' accents package (see Section E. 1 on how to obtain it).

7.8 Stretchable horizontal lines

${ }^{\mathrm{ET}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ provides three types of stretchable horizontal lines that appear above or below a formula, braces, bars, and arrows. There are also stretchable arrow math symbols.

7.8.1 Horizontal braces

The \overbrace command places a brace of variable size above its argument, as in

$$
\overbrace{a+b+\cdots+z}
$$

which is typed as

```
\[
    \overbrace{a + b + \dots + z}
```

\]

A superscript adds a label to the brace, as in

$$
\overbrace{a+a+\cdots+a}^{n}
$$

which is typed as

$$
\overbrace\{a + a + \dots + a\}^\{n\}
$$

The \underbrace command works similarly, placing a brace below its argument. A subscript adds a label to the brace, as in

$$
\underbrace{a+a+\cdots+a}_{n}
$$

which is typed as

$$
\backslash[
$$

$$
\text { \underbrace\{a + a + \dots + a\}_\{n\} }
$$

\]

The following example combines these two commands:

$$
\underbrace{\overbrace{a+\cdots+a}^{(m-n) / 2}+\underbrace{b+\cdots+b}_{n}+\overbrace{a+\cdots+a}^{(m-n) / 2}}_{m}
$$

This example is typed as

```
\[
    \underbrace{
        \overbrace{a + \dots + a}^{(m - n)/2}
        + \underbrace{b + \dots + b}_{n}
        + \overbrace{a + \dots + a}^{(m - n)/2}
    }_{m}
```

\]

7.8.2 Overlines and underlines

The \overline and \underline commands draw lines above or below a formula. For example,

$$
\overline{\bar{X} \cup \overline{\bar{X}}}=\overline{\bar{X}}
$$

is typed as

```
\[
    \overline{ \overline{X} \cup \overline{\overline{X}} }
    = \overline{ \overline{X} }
```

\]

Similarly, you can place arrows above and below an expression:

\[

\]

which is typed as

```
\begin{gather*}
    \overleftarrow{a} \quad \overrightarrow{aa}\\
    \overleftrightarrow{aaa} \quad \underleftarrow{aaaa}\quad
    \underrightarrow{aaaaa} \quad \underleftrightarrow{aaaaaa}
\end{gather*}
```


7.8.3 Stretchable arrow math symbols

There are two stretchable arrow math symbols that extend to accommodate a formula
 formula on top is given as the argument (possibly empty) and the formula below is an optional argument.

$$
A \xrightarrow{1-1} B \underset{\alpha \rightarrow \beta}{\stackrel{\text { onto }}{\leftrightarrows}} C \underset{\gamma}{\leftarrow} D \leftarrow E
$$

is typed as

```
\[
    A \xrightarrow{\text{1-1}} B \xleftarrow[\alpha\to\beta]
        {\text{onto}} C \xleftarrow[\gamma]{} D \xleftarrow{} E
\]
```

There are other stretchable arrow math symbols described in Section 9.8, but they can only be used in commutative diagrams.

7.9 Formula Gallery

In this section I present a collection of formulas-some simple, some complex-that illustrate the power of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

Some of these examples require the amssymb package, so it is a good idea to include the line

```
\usepackage{amssymb,latexsym}
```

following the \documentclass line of any article.
Formula 1 A set-valued function

$$
x \mapsto\{c \in C \mid c \leq x\}
$$

```
\[
    x \mapsto \{\, c \in C \mid c \leq x \,\}
\]
```

To equalize the spacing around $c \in C$ and $c \leq x$, a thin space (\backslash,) was added inside each brace (see Section 8.1). The same technique is used in several other formulas in this section.

Formula 2

$$
\left|\bigcup\left(I_{j} \mid j \in J\right)\right|<\mathfrak{m}
$$

```
\[
    \left| \bigcup (\, I_{j} \mid j \in J \,) \right|
    < \mathfrak{m}
\]
```

We use the delimiters \left| and \right| (see Section 7.5.1). The Fraktur \mathfrak{m} is introduced in Section 8.3.2.

Formula 3 Note that you have to add spacing both before and after the text fragment for some in the following example. The argument of \text is typeset in text mode, so spaces are recognized.

$$
A=\left\{x \in X \mid x \in X_{i}, \text { for some } i \in I\right\}
$$

$$
```
A = \{\, x \in X \mid x \in X_{i},
    \text{ for some $i \in I$} \,\}
```
$$

Formula 4 Space to show logical structure:

$$
\left\langle a_{1}, a_{2}\right\rangle \leq\left\langle a_{1}^{\prime}, a_{2}^{\prime}\right\rangle \quad \text { iff } \quad a_{1}<a_{1}^{\prime} \quad \text { or } \quad a_{1}=a_{1}^{\prime} \text { and } a_{2} \leq a_{2}^{\prime}
$$

$$
```
\langle a_{1}, a_{2} \rangle \leq
\langle a'_{1}, a'_{2}\rangle \qquad \text{if{f}}
\qquad a_{1} < a'_{1} \quad \text{or}
\quad a_{1} = a'_{1} \text{ and } a_{2} \leq a'_{2}
```
$$

Note that in if $\{f\}$ (in the argument of the first \backslash text) the second f is enclosed in braces to avoid the use of the ligature-the merging of the two f's. For the proper way of typesetting iff without a ligature, see Section 5.4.6.

Formula 5 Here are some examples of Greek letters:

$$
\Gamma_{u^{\prime}}=\left\{\gamma \mid \gamma<2 \chi, B_{\alpha} \nsubseteq u^{\prime}, B_{\gamma} \subseteq u^{\prime}\right\}
$$

$$
```
\Gamma_{u'} = \{\,\gamma \mid \gamma < 2\chi,\ B_{\alpha}
```
 \nsubseteq u', \ B_\{\gamma\} \subseteq u' \\,\\\(}\)
$$

See Section B. 1 for a complete listing of Greek letters. We use the command \rangle_{\sqcup} to properly space the formula. This command can be used both in text and in math.

Formula 6 \mathbb allows you to use the blackboard bold math alphabet, which only provides capital letters:

$$
A=B^{2} \times \mathbb{Z}
$$

$$
\[
\mathrm{A}=\mathrm{B}\{2\} \backslash \text { times } \backslash \text { mathbb }\{\mathrm{Z}\}
$$

\]

Formula 7 \left[and \right] provide stretched delimiters:

```
        y}\\equivz\vee\mp@subsup{\bigvee}{i\inC}{}[\mp@subsup{s}{i}{C}]\quad(\operatorname{mod}\Phi
\[
    y^C \equiv z \vee \bigvee_{ i \in C } \left[ s_{i}^{C}
    \right] \pmod{ \Phi }
\]
```

Notice how the superscript is set directly above the subscript in s_{i}^{C}.
Formula 8 A complicated congruence:

$$
y \vee \bigvee\left(\left[B_{\gamma}\right] \mid \gamma \in \Gamma\right) \equiv z \vee \bigvee\left(\left[B_{\gamma}\right] \mid \gamma \in \Gamma\right) \quad\left(\bmod \Phi^{x}\right)
$$

```
\[
    y \vee \bigvee (\, [B_{\gamma}] \mid \gamma
        \in \Gamma \,) \equiv z \vee \bigvee (\, [B_{\gamma}]
        \mid \gamma \in \Gamma \,) \pmod{ \Phi^{x} }
\]
```

Formula 9 Use \nolimits to force the "limit" of the large operator to display as a subscript (see Section 7.6.4):

$$
f(\mathbf{x})=\bigvee_{\mathfrak{m}}\left(\bigwedge_{\mathfrak{m}}\left(x_{j} \mid j \in I_{i}\right) \mid i<\aleph_{\alpha}\right)
$$

```
\[
    f(\mathbf{x}) =
    \bigvee\nolimits_{\!\mathfrak{m}}
    \left(\,
    \bigwedge\nolimits_{\mathfrak{m}}
    (\, x_{j} \mid j \in I_{i} \,)
    \mid i < \aleph_{\alpha}
    \,\right)
\]
```

Notice that a negative space ($\backslash!$) was inserted to bring the \mathfrak{m} a little closer to the big join symbol \bigvee.

Formula 10 The \left. command gives a blank left delimiter, which is needed to balance the \right| command:

$$
\left.\widehat{F}(x)\right|_{a} ^{b}=\widehat{F}(b)-\widehat{F}(a)
$$

```
\[
    \left. \widehat{F}(x) \rightl_{a}^{b}
    = \widehat{F}(b) - \widehat{F}(a)
\]
```

Formula 11 The \underset and \overset commands build new symbols (see Section 8.2.1):

$$
u+\underset{\alpha}{ } v \stackrel{1}{\sim} w \stackrel{2}{\sim} z
$$

$$
u \underset\{\alpha\}\{+\} v \overset\{1\}\{\thicksim\} w \overset\{2\}\{\thicksim\} z
$$

Note that the new symbols $\stackrel{1}{\sim}$ and $\stackrel{2}{\sim}$ are binary relations and + is a binary operation.
Formula 12 Small size bold def:

$$
f(x) \stackrel{\text { def }}{=} x^{2}-1
$$

$$
\(\mathrm{f}(\mathrm{x})\) \overset \(\{\) \mathbf \(\{\mathrm{def}\}\}\{=\} \mathrm{x}\) ^2\} - 1
$$

Formula 13 Math accents run amok:

$$
\overbrace{a^{\vee}+b^{\vee}+\cdots+z^{\vee}}^{\check{n}}
$$

$$
\overbrace\{a\spcheck + b\spcheck + \dots + z\spcheck\}^^ \(\{\backslash\) breve\{\breve\{n\}\}\}
$$

Recall that for the $\backslash \mathrm{sp}$ commands you need the amsxtra package.
Formula 14

$$
\left|\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\right|=7
$$

$$
\begin\{vmatrix\} }
\(\mathrm{a}+\mathrm{b}+\mathrm{c} \& \mathrm{uv} \backslash \backslash\)
\(\mathrm{a}+\mathrm{b} \& \mathrm{c}+\mathrm{d}\)
\end\{vmatrix\} }
\(=7\)
$$

$$
\left\|\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\right\|=7
$$

```
\[
    \begin{Vmatrix}
        a + b + c & uv\\
        a + b & c + d
    \end{Vmatrix}
    = 7
```

\]

Formula 15

$$
\boldsymbol{\alpha}^{2} \sum_{j \in \mathbf{N}} b_{i j} \hat{y}_{j}=\sum_{j \in \mathbf{N}} b_{i j}^{(\lambda)} \hat{y}_{j}+\left(b_{i i}-\lambda_{i}\right) \hat{y}_{i} \hat{y}
$$

```
\[
    \boldsymbol{\alpha}^2\sum_{j \in \mathbf{N}} b_{ij}
    \hat{y}_{j} = \sum_{j \in \mathbf{N}}
    b^{(\lambda)}_{ij}\hat{y}_{j}
    + (b_{ii} - \lambda_{i}) \hat{y}_{i} \hat{y}
\]
```

\backslash mathbf $\{\mathrm{N}\}$ makes a bold N and \backslash boldsymbol $\{\backslash$ alpha\} produces a bold $\boldsymbol{\alpha}$ (see Section 8.3.2).

Formula 16 To produce the formula

$$
\left(\prod_{j=1}^{n} \hat{x}_{j}\right) H_{c}=\frac{1}{2} \hat{k}_{i j} \operatorname{det} \widehat{\mathbf{K}}(i \mid i)
$$

try typing

```
\[
    \left( \prod^n_{\, j = 1} \hat{ x }_{j} \right) H_{c}=
    \frac{1}{2} \hat{k}_{ij} \det \hat{ \mathbf{K} }(i|i)
\]
```

which typesets as

$$
\left(\prod_{j=1}^{n} \hat{x}_{j}\right) H_{c}=\frac{1}{2} \hat{k}_{i j} \operatorname{det} \hat{\mathbf{K}}(i \mid i)
$$

This is not quite right. You can correct the overly large parentheses by using the \biggl and \biggr commands in place of \left(and \right), respectively (see Section 7.5.2). Adjust the small hat over \mathbf{K} by using \widehat:

```
\[
    \biggl( \prod^n_{\, j = 1} \hat{ x }_{j} \biggr)
    H_{c} = \frac{1}{2}\hat{ k }_{ij}
    \det \widehat{ \mathbf{K} }(i|i)
\]
which gives you the desired formula.
Formula 17 In this formula, I have used \overline \(\{\mathrm{I}\}\) to get \(\bar{I}\). You could, instead, use \(\backslash \operatorname{bar}\{\mathrm{I}\}\), which is typeset as \(\bar{I}\).
```

```
    det K}(t=1,\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{})=\mp@subsup{\sum}{I\in\mathbf{n}}{}(-1\mp@subsup{)}{}{|I|}\mp@subsup{\prod}{i\inI}{}\mp@subsup{t}{i}{}\mp@subsup{\prod}{j\inI}{}(\mp@subsup{D}{j}{}+\mp@subsup{\lambda}{j}{}\mp@subsup{t}{j}{})\operatorname{det}\mp@subsup{\mathbf{A}}{}{(\lambda)}(\overline{I}|\overline{I})=
```

 det K}(t=1,\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{})=\mp@subsup{\sum}{I\in\mathbf{n}}{}(-1\mp@subsup{)}{}{|I|}\mp@subsup{\prod}{i\inI}{}\mp@subsup{t}{i}{}\mp@subsup{\prod}{j\inI}{}(\mp@subsup{D}{j}{}+\mp@subsup{\lambda}{j}{}\mp@subsup{t}{j}{})\operatorname{det}\mp@subsup{\mathbf{A}}{}{(\lambda)}(\overline{I}|\overline{I})=
 $$
\det \mathbf{K} (t = 1, t_{1}, \dots, t_{n}) =
 \det \mathbf{K} (t = 1, t_{1}, \dots, t_{n}) =
 \sum_{I \in \mathbf{n} }(-1)^{|I|} \prod_{i \in I}t_{i}
 \sum_{I \in \mathbf{n} }(-1)^{|I|} \prod_{i \in I}t_{i}
 \prod_{j \in I} (D_{j} + \lambda_{j} t_{j})
 \prod_{j \in I} (D_{j} + \lambda_{j} t_{j})
 \det \mathbf{A}^{(\lambda)}
 \det \mathbf{A}^{(\lambda)}
 (\,\overline{I} | \overline{I}\,) = 0
 (\,\overline{I} | \overline{I}\,) = 0
$$

```

Formula 18 The command \(\backslash \mid\) provides the \(\|\) math symbol in this formula:
\[
\lim _{\left(v, v^{\prime}\right) \rightarrow(0,0)} \frac{H(z+v)-H\left(z+v^{\prime}\right)-B H(z)\left(v-v^{\prime}\right)}{\left\|v-v^{\prime}\right\|}=0
\]
\[
\[
\begin{aligned}
& \text { \lim_\{(v, v') \to (0, 0) \} } \\
& \text { \frac\{H(z + v) - H(z + v') - BH(z) (v - v') \} } \\
& \{\backslash|~ v-v ' \|\}=0
\end{aligned}
\]
\]

Formula 19 This formula uses the calligraphic math alphabet (see Section 8.3.2):
\[
\int_{\mathcal{D}}|\overline{\partial u}|^{2} \Phi_{0}(z) e^{\alpha|z|^{2}} \geq c_{4} \alpha \int_{\mathcal{D}}|u|^{2} \Phi_{0} e^{\alpha|z|^{2}}+c_{5} \delta^{-2} \int_{A}|u|^{2} \Phi_{0} e^{\alpha|z|^{2}}
\]
\[
\int_\{\mathcal\{D\}\} | \overline\{\partial u\} |~\{2\}
\Phi_\{0\}(z) e^\{\alpha \(\left.|z|^{\wedge} 2\right\}\)
\geq c_\{4\} \alpha \int_\{\mathcal\{D\}\} |u|^\{2\}\Phi_\{0\}
\(e^{\wedge}\{\backslash\) alpha \(|z| へ\{2\}\}\)
\(+c_{-}\{5\} \backslash d e l t a \wedge\{-2\}\) \int_\{A\} |u|^\{2\}
\Phi_\{0\} e^\{\alpha \(|z| へ\{2\}\}\)
\]

Formula 20 The \hdotsfor command sets dots that span multiple columns in a matrix. The \dfrac command is the displayed variant of the \frac command (see Section 7.4.1), used here because the matrix entries with \(\backslash\) frac would look too small.
\[
\mathbf{A}=\left(\begin{array}{lllll}
\frac{\varphi \cdot X_{n, 1}}{\varphi_{1} \times \varepsilon_{1}} & \left(x+\varepsilon_{2}\right)^{2} & \cdots & \left(x+\varepsilon_{n-1}\right)^{n-1} & \left(x+\varepsilon_{n}\right)^{n} \\
\frac{\varphi \cdot X_{n, 1}}{\varphi_{2} \times \varepsilon_{1}} & \frac{\varphi \cdot X_{n, 2}}{\varphi_{2} \times \varepsilon_{2}} & \cdots & \left(x+\varepsilon_{n-1}\right)^{n-1} & \left(x+\varepsilon_{n}\right)^{n} \\
\cdots \ldots \\
\frac{\varphi \cdot X_{n, 1}}{\varphi_{n} \times \varepsilon_{1}} & \frac{\varphi \cdot X_{n, 2}}{\varphi_{n} \times \varepsilon_{2}} & \ldots & \frac{\varphi \cdot X_{n, n-1}}{\varphi_{n} \times \varepsilon_{n-1}} & \frac{\varphi \cdot X_{n, n}}{\varphi_{n} \times \varepsilon_{n}}
\end{array}\right)+\mathbf{I}_{n}
\]
```

$$
\mathbf{A} =
 \begin{pmatrix}
 \dfrac{\varphi \cdot X_{n, 1}} {\varphi_{1} \times
 \varepsilon_{1}} & (x + \varepsilon_{2})^{2}
 & \cdots & (x + \varepsilon_{n - 1})^{n - 1}
 & (x + \varepsilon_{n})^{n}\\\[10pt]
 \dfrac{\varphi \cdot X_{n, 1}} {\varphi_{2} \times
 \varepsilon_{1}} & \dfrac{\varphi \cdot X_{n, 2}}
 {\varphi_{2} \times \varepsilon_{2}} & \cdots &
 (x + \varepsilon_{n - 1})^{n - 1}
 & (x + \varepsilon_{n})^{n}\\\
 \hdotsfor{5}\\
 \dfrac{\varphi \cdot X_{n, 1}} {\varphi_{n} \times
 \varepsilon_{1}} & \dfrac{\varphi \cdot X_{n, 2}}
 {\varphi_{n} \times \varepsilon_{2}} & \cdots
 & \dfrac{\varphi \cdot X_{n, n - 1}} {\varphi_{n}
 \times \varepsilon_{n - 1}} &
 \dfrac{\varphi\cdot X_{n, n}}
 {\varphi_{n} \times \varepsilon_{n}}
 \end{pmatrix}
 + \mathbf{I}_{n}
$$

```

Recall the discussion of \dots vs. \cdots and \ldots in Section 7.4.3. In this formula, we have to use \cdots. Matrices are discussed in detail in Section 9.7.1.

Note the use of the command \(\backslash \backslash[10 \mathrm{pt}]\). If you use \(\backslash \backslash\) instead, the first and second lines of the matrix are set too close.

I show you in Section 15.1.2 how to rewrite the formula to make it shorter and more readable.

\section*{More math}

In the previous chapter, we discuss the basic building blocks of a formula and how to put them together to form more complex formulas. This chapter starts out by going one step lower, to the characters that make up a formula. We discuss math symbols and math alphabets.
\(\mathrm{LAT}_{\mathrm{E}} \mathrm{X}\) was designed for typesetting math, so it is not surprising that it contains a very large number of math symbols. Section 8.1 classifies and describes them. Section 8.2 discusses how to build new symbols from existing ones. Math alphabets and symbols are discussed in Section 8.3. Horizontal spacing commands in math are described in Section 8.4.

LTEX provides a variety of ways to number and tag equations. These techniques are described in Section 8.5. We conclude the chapter with two minor topics: generalized fractions (Section 8.6.1) and boxed formulas (Section 8.6.2).

\subsection*{8.1 Spacing of symbols}

ETEX provides a large variety of math symbols: Greek characters \((\alpha)\), binary operations (०), binary relations ( \(\leq\) ), negated binary relations ( \(\nsubseteq\) ), arrows ( \(\nearrow\) ), delimiters ( \(\left\{\right.\) ), and so on. All the math symbols provided by \(\mathrm{LTE}_{\mathrm{E}}\) are listed in the tables of

Appendix B.
Consider the formula
\[
A=\left\{x \in X \mid x \beta \geq x y>(x+1)^{2}-\alpha\right\}
\]
which is typed as
```

\ [
A = \{\, x \in X \mid x \beta \geq x y
> (x + 1)^{2} - \alpha \,\}
\]

```

The spacing of the symbols in the formula varies. In \(x \beta\), the two symbols are very close. In \(x \in X\), there is some space around the \(\in\), and in \(x+1\), there is somewhat less space around the + . There is a little space after \(\{\) and before \(\}\)-not quite enough for this formula, which is why the thinspace commands ( \(\backslash\), ) were added.

\subsection*{8.1.1 Classification}

IATEX classifies symbols into several categories or types and spaces them accordingly. In the formula
\[
A=\left\{x \in X \mid x \beta \geq x y>(x+1)^{2}-\alpha\right\}
\]
we find
- Ordinary math symbols: \(A, x, X, \beta\), and so on
- Binary relations: \(=, \in, \mid, \geq\), and \(>\)
- Binary operations: + and -
- Delimiters: \{, \}, (, and )

As a rule, you do not have to be concerned with whether or not a given symbol in a formula, say \(\times\), is a binary operation. \(\mathrm{IAT}_{\mathrm{E}} X\) spaces the typeset symbol correctly.

\subsection*{8.1.2 Three exceptions}

There are three symbols with more than one classification:,+- , and \(\mid\).
+ or - could be either a binary operation, for instance, \(a-b\), or a sign, for instance, \(-b\).

Rule ■ + and -
+ or - are binary operations when preceded and followed by a symbol or an empty group (\{ \}).

So, for instance, in
\[
\begin{aligned}
(A+B C) x+\quad C y & =0 \\
E x+(F+G) y & =23 .
\end{aligned}
\]
which is typed as (see the alignat* environment in Section 9.5.4)
```

\begin\{alignat*\}\{2\} }
$(A+B C) x \&\}+\{ \} \& C \quad \& y=0, \backslash \backslash$
Ex $\&\}+\{ \} \&(F+G) \& y=23$.
\end\{alignat*\} }

```
we use the empty groups, \(\left\}\right.\), to tell \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) that the second + in line 1 and the first + in line 2 of the formula are binary operations. If we leave out the empty groups, and type instead
\begin\{alignat*\}\{2\} }
\((A+B C) x \&+\& C \quad \& y=0, \backslash \backslash\) Ex \& \(\&(F+G) \& y=23\).
\end\{alignat*\} }
we get
\[
\begin{aligned}
(A+B C) x+\quad C y & =0, \\
E x+(F+G) y & =23 .
\end{aligned}
\]

Another illustration is given later in this section using the \(\backslash\) phantom command.
This problem often arises in split formulas, for example if the formula is split just before \(\mathrm{a}+\) or - , you should start the next line with \(\}+\) or \(\}-\). See Section 9.3 for examples.

The \(\mid\) symbol can play several different roles in a math formula, so \({ }^{\mathrm{AT}} \mathrm{EX}\) provides separate commands to specify the symbol's meaning.

\section*{Rule ■ The four roles of the | symbol}
- | ordinary math symbol
- \mid binary relation
- \left| left delimiter
- \right| right delimiter

Note the differences between the spacing in \(a \mid b\), typed as \(\$ \mathrm{a} \mid \mathrm{b} \$\), and in \(a \mid b\), typed as \(\$ \mathrm{a} \backslash\) mid \(\mathrm{b} \$\).
\begin{tabular}{|c|c|c|c|}
\hline Name & Width & Short & Long \\
\hline 1 mu (math unit) & 1 & & \(\backslash \mathrm{mspace} \mathrm{\{1mu} \mathrm{\}}\) \\
\hline thinspace & \(u\) & \\, & \thinspace \\
\hline medspace & \(u\) & \: & \(\backslash\) medspace \\
\hline thickspace & U & \; & \thickspace \\
\hline interword space & \(\sqcup\) & \(\backslash \sqcup\) & \\
\hline 1 em & \(\llcorner\) & & \quad \\
\hline 2 em & \(\square\) & & \qquad \\
\hline \multicolumn{4}{|l|}{Negative space} \\
\hline 1 mu & 1 & & \(\backslash \mathrm{mspace}\{-1 \mathrm{mu}\) \} \\
\hline thinspace & \(u\) & \(\backslash!\) & \(\backslash\) negthinspace \\
\hline medspace & U & & \(\backslash\) negmedspace \\
\hline thickspace & \(\sqcup\) & & \(\backslash\) negthickspace \\
\hline
\end{tabular}

Table 8.1: Math spacing commands.

\subsection*{8.1.3 Spacing commands}

There are some situations where \(\mathrm{ETT}_{\mathrm{E}} \mathrm{X}\) cannot typeset a formula properly and you have to add spacing commands. Luckily, \(\mathrm{IT}_{\mathrm{E}} \mathrm{X}\) provides a variety of spacing commands, listed in Table 8.1. The \neg commands remove space by "reversing the print head".

The \quad and \qquad commands are often used to adjust aligned formulas (see Chapter 9) or to add space before text in a math formula. The size of \quad (= 1 em ) and \(\backslash q q u a d ~(~=~ 2 ~ e m) ~ d e p e n d s ~ o n ~ t h e ~ c u r r e n t ~ f o n t . ~\)

The \(\backslash\), and \(\backslash!\) commands are the most useful for fine tuning math formulas, see some examples in the Formula Gallery and in the next section. The \(\backslash\) mspace command and the math unit \(m u\) provides you with even finer control. \(18 \mathrm{mu}=1 \mathrm{em}\), defined in Section 5.8.3. For example, \mspace \(\{3 \mathrm{mu}\}\) adds a space that is \(1 / 6 \mathrm{em}\) long. There is an interesting use of mu on page 109 .

\subsection*{8.1.4 Examples}

The Formula Gallery in Section 7.9 starts out with an example that shows the importance of fine tuning. In set notation, when using \mid for "such that", thin spaces are inserted just inside the braces. Some more examples of fine tuning follow. One more example can be found in Section 8.2.1.

Example 1 In Section 3.3, we type the formula \(\int_{0}^{\pi} \sin x d x=2\) as
\(\$ \backslash i n t \_\{0\} \wedge\{\) pi \(\} \backslash \sin \mathrm{x} \backslash, d x=2 \$\)
Notice the thinspace spacing command \(\backslash\), between \(\backslash \sin \mathrm{x}\) and dx . Without the command, \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) would have crowded \(\sin x\) and \(d x: \int_{0}^{\pi} \sin x d x=2\).

Example \(2|-f(x)|\), typed as \(\$|-\mathrm{f}(\mathrm{x})| \$\), is spaced incorrectly. - becomes a binary operation by the + and - rule. To get the correct spacing, as in \(|-f(x)|\), type \(\$ \backslash \operatorname{left|} \mid \mathrm{f}(\mathrm{x}) \backslash\) right \(\mid \$\). This form tells \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) that the first | is a left delimiter, by the | rule, and therefore - is the unary minus sign, not the binary subtraction operation.

Example 3 In \(\sqrt{5}\) side, typed as
\$\sqrt\{5\} \text\{side\}\$
\(\sqrt{5}\) is too close to side. So type it as
\$\sqrt\{5\} \\, \text\{side\}\$
which typesets as \(\sqrt{5}\) side.
Example 4 In \(\sin x / \log n\), the division symbol / is too far from \(\log n\), so type
\(\$ \backslash \sin \mathrm{x} / \backslash!\backslash \log \mathrm{n} \$\)
which prints \(\sin x / \log n\).
Example 5 In \(f(1 / \sqrt{n})\), typed as
\$f(1 / \sqrt\{n\})\$
the square root almost touches the closing parenthesis. To correct it, type
\$f(1 / \sqrt\{n\}\\,)\$
which typesets as \(f(1 / \sqrt{n})\).
There is one more symbol with special spacing: the \colon command, used for formulas such as \(f: A \rightarrow B\) (typed as \(\$ \mathrm{f}\) \colon \(\mathrm{A} \backslash \mathrm{to} \mathrm{B} \$\) ). Observe that \(\$ \mathrm{f}: \mathrm{A} \backslash\) to \(\mathrm{B} \$\) typesets as \(f: A \rightarrow B\). The spacing is awful.

See Section 8.2.3 on how to declare the type of a symbol.

\subsection*{8.1.5 The phantom command}

The \phantom\{argument\} command (introduced for text in Section 5.8.1) produces a space in a formula equivalent to the space that would be occupied by its typeset argument. This command is one of the most powerful tools available to us for fine tuning alignments. Here are two simple illustrations:
\[
A=\left(\begin{array}{rrr}
1 & 3 & 1 \\
2 & 1 & 1 \\
-2 & 2 & -1
\end{array}\right)
\]
typed as
\[
\backslash[
\]
```

A = $$
\begin{pmatrix}
 1 & 3 & 1\\
 2 & 1 & 1\\
 -2 & 2 & -1\\
 \end{pmatrix}
$$

```
\]
and
\[
\begin{aligned}
a+b+c+d & =0, \\
c+d+e & =5 .
\end{aligned}
\]
typed as
```

\begin\{align*\} }
$\mathrm{a}+\mathrm{b}+\mathrm{c} \&+\mathrm{d} \backslash$ phantom $\{\}+\mathrm{e}\}=0, \backslash \backslash$
$c \&+d+e=5$.
\end\{align*\} }

```

Note that \(\backslash\) phantom \(\{+e\}\) yields incorrect spacing by the + and - rule:
\[
\begin{array}{r}
a+b+c+d \quad=0 \\
c+d+e=5
\end{array}
\]

See Section 9.6 .2 for an additional example.

\subsection*{8.2 Building new symbols}

No matter how many math symbols \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) provides-see a complete listing in Appendix B—users always seem to want more. \({ }^{1}{ }^{\text {ETEX}}\) E gives you excellent tools to build new symbols from existing ones.

\subsection*{8.2.1 Stacking symbols}

To place any symbol above, or below, any other, for instance, \(\stackrel{\mathfrak{u}}{\sim}\), use the \overset command. It takes two arguments-the first argument is set in a smaller size above the second argument. The spacing rules of the symbol in the second argument remain valid, i.e., the type remains the same. Since \(\sim\) is a binary relation, so is \(\stackrel{\sim}{\sim}\). The \underset command is the same except that the first argument is set under the second argument. For example,
\[
\begin{array}{cccc}
{ }_{a}^{\alpha} & X & \stackrel{\alpha}{a_{i}} & \stackrel{\alpha}{a_{i}}
\end{array}
\]
are typed as

\footnotetext{
\({ }^{1}\) The best is yet to come, see Section H.3.
}
```

$$
\overset{\alpha}{a} \qquad
 \underset{\boldsymbol{\cdot}}{X} \qquad
 \overset{\alpha}{ a_{i} } \qquad
 \overset{\alpha}{a}_{i}
$$

```

For the \(\backslash\) boldsymbol command, see Section 8.3.3. Note that in the third example, \({ }_{a}^{\alpha}\), the \(\alpha\) seems to be sitting too far to the right but the fourth example corrects that.

You can also use these commands with binary relations, as in
\[
f(x) \stackrel{\text { def }}{=} x^{2}-1
\]
which is typed as
```

$$
f(x) \overset{ \text{def} }{=} x^{2} - 1
$$

```

Since \(=\) is a binary relation, \(\xlongequal{\text { def }}\) becomes a binary relation, as shown by the spacing on either side. Here is another example,
\[
\frac{a}{b} \stackrel{u}{+} \frac{c}{d} \stackrel{l}{+} \frac{e}{f}
\]
which is typed as
```

$$
\frac{a}{b} \overset{u}{+} \frac{c}{d}
 \overset{l}{+} \frac{e}{f}
$$

```

Note that \(\stackrel{u}{+}\) and \(\stackrel{l}{+}\) are properly spaced as binary operations.
As we discuss in Section 7.4.6, the safer definitions for these examples are
```

$$
f(x) \overset{ \normalfont\text{def} }{=} x^{2} - 1
$$

and

$$
\frac{a}{b} \overset{\normalfont u}{+} \frac{c}{d}
 \overset{\normalfont l}{+} \frac{e}{f}
```
$$

### 8.2.2 Negating and side-setting symbols

You can negate with the \not command; for instance, $a \notin b$ and $a \neq b$ are typed as $\$ \mathrm{a} \backslash$ not $\backslash i n \mathrm{~b} \$$ and $\$ \mathrm{a}$ \not= $\mathrm{b} \$$, respectively. It is preferable, however, to use the negated symbols $\notin$, typed as $\$ \backslash$ notin $\$$, and $\neq$, typed as $\$ \backslash$ ne $\$$. See the negated binary relations table in Section B.2. For instance, " $a$ does not divide $b$ ", $a \nmid b$, should be typed as $\$ \mathrm{a} \backslash \mathrm{nmid} \mathrm{b} \$$, not as $\$ \mathrm{a} \backslash$ not $\backslash$ mid $\mathrm{b} \$$, which typesets as $a \ b$. In Section 8.2.3, you learn how to improve $a V b$ to $a \nmid b$, typed as $\$ \mathrm{a} \backslash$ mathrel $\{\backslash$ not $\mid\} \mathrm{b} \$$. However, $\$ \mathrm{a} \backslash \mathrm{nmid} \mathrm{b} \$$ is still best.
$\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ provides the $\backslash$ sideset command to set symbols at the corners of large operators other than the "corners" (the last four delimiters in Table 7.1). This command takes three arguments:

```
\sideset{ _{ll}^{ul} }{ _{lr}^{ur} }{large_op}
```

where $l l$ stands for the symbol to be placed at the lower left, $u l$ for upper left, $l r$ for lower right, and $u r$ for upper right; large_op is a large operator. These two examples,

$$
\prod_{a}^{c} \text { and }^{e} \prod
$$

are typed as

```
\[
 \sideset{}{_{a}^{c}}{\prod}\text{ and } \sideset{^{e}}{}{\prod}
\]
```

Note that the two first arguments are compulsory, although one or the other may be empty, while the third argument must contain the large operator.

Here is a more meaningful example:

```
\[
 \sideset{}{'}{\sum}_{\substack{ i < 10\\ j < 10 } } x_{i}z_{j}
\]
```

is typeset as

$$
\sum_{\substack{i<10 \\ j<10}}^{\prime} x_{i} z_{j}
$$

In this example, note that prime $\left(^{\prime}\right.$ ) is an automatically superscripted symbol (see Section 7.4.1), so you do not have to type ${ }^{\wedge}$ ' in the second argument. Typing \sum' would not work, since $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ would place the prime above the sum symbol.

Thus, \sideset helps in mixing sub- and superscripts in "limit" positions with others in "nolimit" positions, allowing for a total of six positions in displayed operators with limits. Try

$$
{ }_{a}^{c} \prod_{n}^{r} e
$$

typed as

```
\[
 \sideset{_{a}^{c}}{_{e}^{i}}{\prod}_{n}^{r}
\]
```


### 8.2.3 Changing the type of a symbol

Some symbols are binary relations and some are binary operations (see Section 8.1). In fact, you can force any symbol to behave like either type.

The \mathbin command declares its argument to be a binary operation. For example,
$\backslash$ mathbin\{ $\backslash$ alpha\}
makes this instance of \alpha behave like a binary operation, as in $a \alpha b$, typed as
\$a \mathbin\{\alpha\} b\$
You can use the \mathrel command to make a symbol behave like a binary relation, as in the formula $a \alpha b$, typed as
\$a \mathrel\{ \alpha \} b\$
You can see
$a \alpha b \quad(\$ \mathrm{a} \backslash m a t h b i n\{\backslash a l p h a\} ~ b \$) ~$
$a \alpha b \quad$ (\$a \mathrel\{\alpha\} b\$)
that a binary relation provides a bit more space than a binary operation. There is an interesting use of \mathbin on page 109.

In Section 7.6.2, we discussed the \DeclareMathOperator command and its *-ed version, to declare a symbol-or any text or formula-a math operator.

### 8.3 Math alphabets and symbols

The classification of math symbols in the context of spacing was discussed in Section 8.1. The symbols in a formula can also be classified as characters from math alphabets and math symbols. In the formula

$$
A=\left\{x \in X \mid x \beta \geq x y>(x+1)^{2}-\alpha\right\}
$$

the following characters come from math alphabets:

$$
\begin{array}{llllll}
A & x & X & y & 1 & 2
\end{array}
$$

whereas these characters are math symbols:

$$
=\{\in \mid \beta \geq>(+)-\alpha\}
$$

### 8.3.1 Math alphabets

The letters and digits typed in a math formula come from math alphabets. LATEX's default math alphabet-the one you get if you do not ask for something else-is Computer Modern math italic for letters. In the formula $x^{2} \vee y_{3}=\alpha$, the characters $x$ and $y$ come from this math alphabet. The default math alphabet for digits is Computer Modern roman and the digits 2 and 3 in this formula are typeset in Computer Modern roman.

LATEX has a number of commands to switch type style in math. The two most important commands select the bold and italic versions:

| Command | Math alphabet | Produces |
| :--- | :--- | :--- |
| $\backslash$ mathbf $\{\mathrm{a}\}$ | math bold | 2 Greek gammas, $\gamma$ and $\Gamma$ |
| $\backslash$ mathit $\{\mathrm{a}\}$ | math italic | 2 Greek gammas, $\gamma$ and $\Gamma$ |

These commands change the style of letters, numbers, and upper case Greek characters.
But beware of the pitfalls. For instance, in \mathit\{left-side\} the hyphen typesets as a minus: left - side.

There are four more commands that switch math alphabets:

| Command | Math Alphabet | Produces |
| :--- | :--- | :--- |
| $\backslash$ mathsf $\{\mathrm{a}\}$ | math sans serif | 2 Greek gammas, $\gamma$ and $\Gamma$ |
| $\backslash$ mathrm $\{\mathrm{a}\}$ | math roman | 2 Greek gammas, $\gamma$ and $\Gamma$ |
| \mathtt $\{\mathrm{a}\}$ | math typewriter | 2 Greek gammas, $\gamma$ and $\Gamma$ |
| \mathnormal\{a\} | math italic | 2 Greek gammas,$\gamma$ and $\Gamma$ |

Math roman is used in formulas for operator names, such as $\sin$ in $\sin x$, and for text. For operator names, you should use the \DeclareMathOperator command or the *-ed version, which sets the name of the operator in math roman, and also provides the proper spacing (see Section 8.2.3). For text, you should use the \text command (see Section 7.4.6).

The \mathnormal command switches to the default math alphabet, but this command is seldom used in practice.

The Computer Modern fonts include a math bold italic alphabet, but $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ does not provide a command to access it.

## Rule ■ Math alphabets vs. text alphabets

Do not use text alphabets in a math formula, except in the argument of a \text command.

It may not be easy for you to see the difference, but some things will not look right or may not align properly.

### 8.3.2 Math symbol alphabets

You may have noticed that $\alpha$ was not classified as belonging to an alphabet in the example at the beginning of this section. Indeed, $\alpha$ is treated by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ as a math symbol rather than as a member of a math alphabet. You cannot italicize or slant it, nor is there a sans serif version. There is a bold version, but you must use the $\backslash$ boldsymbol command to produce it. For instance, $\boldsymbol{\alpha}_{\boldsymbol{\beta}}$, is typed as
\$\boldsymbol\{\alpha\}_\{\boldsymbol\{\beta\}\}\$
Note that $\boldsymbol{\beta}$ appears in a small size in $\boldsymbol{\alpha}_{\boldsymbol{\beta}}$.
Four "alphabets of symbols" are built into $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.
Greek The examples $\alpha, \beta$, and $\Gamma$ are typed as
\$\alpha\$, \$\beta\$, \$\Gamma\$
See Section B. 1 for the symbol table.
Calligraphic an uppercase-only alphabet invoked with the \mathcal command. The examples $\mathcal{A}, \mathcal{C}$, and $\mathcal{E}$ are typed as
\$\mathcal\{A\}\$, \$\mathcal\{C\}\$, \$\mathcal\{E\}\$
Euler Fraktur invoked by the $\backslash$ mathfrak command. The examples $\mathfrak{n}, \mathfrak{p}, \mathfrak{N}$, and $\mathfrak{P}$ are typed as
\$\mathfrak\{n\}\$, \$\mathfrak\{p\}\$, \$\mathfrak\{N\}\$, \$\mathfrak\{P\}\$

Blackboard bold uppercase-only math alphabet, invoked with \mathbb. The examples $\mathbb{A}, \mathbb{B}, \mathbb{C}$ are typed as
\$\mathbb\{A\}\$, \$\mathbb\{B\}\$, \$\mathbb\{C\}\$

### 8.3.3 Bold math symbols

In math, most characteristics of a font are specified by LATEX. One exception is boldface. To make a letter from a math alphabet within a formula bold, use the $\backslash$ mathbf command. For instance, in
$\Gamma$
we choose the vector $\mathbf{v}$
$\mathbf{v}$ is produced by $\$ \backslash$ mathbf $\{\mathrm{v}\} \$$.
To obtain bold math symbols, use the \boldsymbol command. For example, the bold symbols

$$
\begin{array}{llllll}
5 & \alpha & \Lambda & \mathcal{A} & \rightarrow & A
\end{array}
$$

are typed as

$$
\backslash[
$$

\boldsymbol\{5\} \quad \boldsymbol\{\alpha\}
\quad \boldsymbol\{\Lambda\}\quad\boldsymbol\{\mathcal\{A\}\}
\quad \boldsymbol\{\to\} \quad \boldsymbol\{A\} $\backslash]$

Note that $\backslash$ boldsymbol $\{\mathrm{A}\}$ typesets as $\boldsymbol{A}$, a bold math italic A. To get an upright $\mathbf{A}$, type $\$ \backslash$ mathbf $\{\mathrm{A}\} \$$.

5 did not really need $\backslash$ boldsymbol; $\backslash \operatorname{mathbf}\{5\}$ gives the same result.
To make an entire formula bold, use the \mathversion\{bold\} command, as in
$\{\backslash m a t h v e r s i o n\{b o l d\}$ \$a \equiv c \pod\{\theta\}\$\}
which typesets as $\boldsymbol{a} \equiv \boldsymbol{c}(\boldsymbol{\theta})$. Note that the \mathversion\{bold\} command is given before the formula.

To typeset $\mathcal{A} \mathcal{M} \mathcal{S}$, type
\$\boldsymbol\{ \mathcal\{A\} \} \boldsymbol\{ \mathcal\{M\} \}
\boldsymbol\{ \mathcal\{S\} \}\$
or
\$\boldsymbol\{ \mathcal\{AMS\} \}\$
or
\{\mathversion\{bold\} \$\mathcal\{AMS\}\$\}
Within the scope of $\backslash$ mathversion\{bold\}, you can undo its effect with
\mathversion\{normal\}

Not all symbols have bold variants. For example, if you type
\$\sum \quad \boldsymbol\{\sum\}\$
you get $\sum \quad \sum$, two identical symbols. If you want to obtain a bold version, use the poor man's bold invoked by the $\backslash \mathrm{pmb}$ command. This command typesets the symbol three times very close to one another producing a bold symbol of some quality. Note that $\backslash p m b$ does destroy the type of the symbol, $\backslash \mathrm{pmb}\{\backslash \mathrm{sum}\}$ is no longer spaced like a large operator. To make it into a large operator, declare in the preamble
\DeclareMathOperator\{<br>boldsum\}\{\pmb\{\sum\}\}
and
\DeclareMathOperator*\{\boldsumlim\}\{\pmb\{\sum\}\}
Compare the following four variants of sum:

$$
\sum_{i=1}^{n} i^{2} \quad \sum_{i=1}^{n} i^{2} \quad \sum_{i=1}^{n} i^{2} \quad \sum_{i=1}^{n} i^{2}
$$

The first sum is typed (in displayed math mode) as
\sum_\{i = 1\}^\{n\} i^\{2\}
The second uses poor man's bold, but does not declare the result to be a large operator:
\pmb\{\sum\}_\{i = 1\}^\{n\} $\mathrm{i}^{\wedge}\{2\}$
The third uses the math operator declared:
\boldsum_\{i = 1\}^\{n\} i^\{2\}
The fourth uses the math operator with limit declared:
\boldsumlim_\{i = 1\}^\{n\} i^\{2\}

### 8.3.4 Size changes

There are four math font sizes, invoked by the command declarations

- \displaystyle, normal size for displayed formulas
- \textstyle, normal size for inline formulas
- \scriptstyle, normal size for subscripted and superscripted symbols
- \scriptscriptstyle, normal size for doubly subscripted and superscripted symbols

These commands control a number of style parameters in addition to the size. Compare the two fractions

$$
\frac{1}{2+\frac{1}{3}} \quad \frac{1}{2+\frac{1}{3}}
$$

which are typed as

$$
\[
\begin{aligned}
& \text { \frac\{1\}\{\displaystyle } 2+\text { \frac }\{1\}\{3\}\} \text { \quad } \\
& \quad \backslash \text { frac\{1\}\{ } 2+\text { \frac\{1\}\{3\} }\}
\end{aligned}
$$

### 8.3.5 Continued fractions

In addition to the $\backslash f r a c, \backslash d f r a c$, and $\backslash t f r a c$ commands (see Section 7.4.1), ETEX makes typesetting continued fractions even easier by providing the \cfrac command. The \cfrac command takes an optional argument, l or $r$, to place the numerator on the left or on the right. For example,

$$
\frac{1}{2+\frac{1}{3+\cdots}} \quad \frac{1}{2+\frac{1}{3+\cdots}}
$$

is typed as

```
\[
 \cfrac{1}{ 2 + \cfrac{1}{3 + \cdots} } \qquad
 \cfrac[l]{1}{2 + \cfrac[1]{1}{3 + \cdots}}
```

\]

### 8.4 Vertical spacing

As a rule, all horizontal and vertical spacing in a math formula is done by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. Nevertheless, you often need to adjust horizontal spacing (see Section 8.1). There is seldom a need to adjust vertical spacing, but there are a few exceptions.

The formula $\sqrt{a}+\sqrt{b}$ does not look quite right, because the square roots are not uniform. You can correct this with \mathstrut commands, which inserts an invisible vertical space:

```
$\sqrt{\mathstrut a} + \sqrt{\mathstrut b}$
```

typesets as $\sqrt{a}+\sqrt{b}$. See Section 5.9.5 for struts in general.
Another way to handle this situation is with the \vphantom (vertical phantom) command, which measures the height of its argument and places a math strut of that height into the formula. So
\$\sqrt $\{\backslash$ vphantom $\{b\}$ a\} $+\backslash$ sqrt $\{b\} \$$
also prints uniform square roots, $\sqrt{a}+\sqrt{b}$. The $\backslash$ vphantom method is more versatile than the previous one.

Here is a more complicated example from a recent research article:

$$
\Theta_{i}=\bigcup\left(\Theta(\overline{a \wedge b}, \bar{a} \wedge \bar{b}) \mid a, b \in B_{i}\right) \vee \bigcup\left(\Theta(\overline{a \vee b}, \bar{a} \vee \bar{b}) \mid a, b \in B_{i}\right)
$$

typed as

$$
Theta_i = \bigcup \(\backslash\) big \(\backslash \backslash\), \Theta \((\backslash, \backslash o v e r l i n e\{a ~\)
```
\wedge b},\overline{\vphantom{b}a} \wedge
 \overline{b}) \mid a,\ b \in B_i \,\big)
\vee \bigcup \big(\, \Theta(\,\overline{a \vee b},
\overline{\vphantom{b}a} \vee \overline{b} \,)
 \mid a,\ b \in B_i \,\big),
```
$$

Another useful command for vertical spacing is the \smash command. It directs ETEX to pretend that its argument does not protrude above or below the line in which it is typeset.

For instance, the two lines of this admonition:

It is very important that you memorize the integral $\frac{1}{\int f(x) d x}=2 g(x)+C$, which will appear on the next test.
are too far apart because $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ had to make room for the fraction. However, in this instance, the extra vertical space is not necessary because the second line is very short. To correct this, place the formula in the argument of a \smash command:

It is \emph\{very important\} that you memorize the integral $\$ \backslash$ smash $\{\backslash$ frac $\{1\}\{\backslash$ int $f(x) \backslash, d x\}\}=2 g(x)+C \$$, which will appear on the next test.
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ produces the following:

It is very important that you memorize the integral $\frac{1}{\int f(x) d x}=2 g(x)+C$, which will appear on the next test.

An optional argument to the $\backslash$ smash command controls which part of the formula is ignored, t to smash the top, and b to smash the bottom.

### 8.5 Tagging and grouping

You can attach a name to an equation using the $\backslash$ tag command. In the equation or equation* environments,
\tag\{name \}
attaches the tag name to the equation-name is typeset as text. The tag replaces the number.

Recall that the numbering of an equation is relative, that is, the number assigned to an equation is relative to the placement of the equation with respect to other equations in the document. An equation tag, on the other hand, is absolute-the tag remains the same even if the equation is moved.

If you want to reference the number generated by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ for an equation, then you have to attach a \label\{name\} command. You reference the number with the $\backslash$ ref $\{$ name $\}$ or \eqref $\{$ name $\}$ command.

Note that an equation may contain both a tag and a label. The tag is typeset and the label can be used for page referencing with the \pageref command (see Section 10.4.2).

If there is a tag, the equation and the equation* environments are equivalent. For example,
(Int)

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

may be typed as

```
\begin{equation*}
 \int_{-\infty}^{\infty} e^{-x^{2}} \, dx
 = \sqrt{\pi}\tag{Int}
\end{equation*}
```

or
$\backslash$ begin\{equation\}
\int_\{-\infty\}^\{\infty\} $e^{\wedge}\left\{-x^{\wedge}\{2\}\right\}$ <br>, $d x$
$=\backslash$ sqrt $\{\backslash$ pi $\} \backslash \operatorname{tag}\{$ Int $\}$
\end\{equation\} }
or

$$
\int_\{-\infty\}^\{\infty\} \(e^{\wedge}\left\{-x^{\wedge}\{2\}\right\}\) \\, \(d x\)
    \(=\backslash\) sqrt \(\{\backslash\) pi \(\} \backslash \operatorname{tag}\{\) Int \(\}\)
$$

Note that $\backslash$ label works in a starred display math environment if a tag is present.
The \tag* command is the same as \tag except that it does not automatically enclose the tag in parentheses. To get

## A-B

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

type

```
\begin{equation}
 \int_{-\infty}^{\infty} e^{-x^{2}} \, dx = \sqrt{\pi}
 \tag*{A--B}
\end{equation}
```

Tagging allows numbered variants of equations. For instance, the equation

$$
\begin{equation*}
A^{[2]} \diamond B^{[2]} \cong(A \diamond B)^{[2]} \tag{1}
\end{equation*}
$$

may need a variant:

$$
A^{\langle 2\rangle} \diamond B^{\langle 2\rangle} \equiv(A \diamond B)^{\langle 2\rangle}
$$

If the label of the first equation is E :first, then the second equation may be typed as follows:

```
\begin{equation}\tag{\ref{E:first}$'$}
 A^{\langle 2 \rangle} \diamond B^{\langle 2\rangle}
 \equiv (A \diamond B)^{\langle 2 \rangle}
\end{equation}
```

Such a tag is absolute in the sense that it does not change if the equation is moved. But if it references a label and the number generated by ETEX for the label changes, the tag changes.

In contrast, grouping applies to a group of adjacent equations. Suppose the last equation was numbered (1) and the next group of equations is to be referred to as (2), with individual equations numbered as (2a), (2b), and so on. Enclosing these equations in a subequations environment accomplishes this goal. For instance,

$$
\begin{equation*}
A^{[2]} \diamond B^{[2]} \cong(A \diamond B)^{[2]} \tag{1a}
\end{equation*}
$$

and its variant

$$
\begin{equation*}
A^{\langle 2\rangle} \diamond B^{\langle 2\rangle} \equiv(A \diamond B)^{\langle 2\rangle} \tag{1b}
\end{equation*}
$$

are typed as

```
\begin{subequations}\label{E:joint}
 \begin{equation}\label{E:original}
 A^{[2]} \diamond B^{[2]} \cong (A \diamond B)^{[2]}
 \end{equation}
 \begin{equation}\label{E:modified}
 A^{\langle 2 \rangle} \diamond B^{\langle 2\rangle}
 \equiv (A \diamond B)^{\langle 2\rangle}
 \end{equation}
\end{subequations}
```

Referring to these equations, you find that

- \eqref $\{\mathrm{E}$ : joint $\}$ resolves to (1)
- \eqref $\{E$ :original\} resolves to (1a)
- \eqref \{E:modified\} resolves to (1b)

Note that in this example, references to the second and third labels produce numbers, (1a) and (1b), that also appear in the typeset version. The group label, E: joint, references the entire group, but (1) does not appear in the typeset version unless referenced.

A subequations environment can contain the multiline math constructs discussed in Chapter 9 (see Section 9.4.4).

### 8.6 Miscellaneous

### 8.6.1 Generalized fractions

The generalized fraction command provides the facility to typeset many variants of fractions and binomials, such as $\frac{a+b}{c}$ and $]^{a+b}$ [. The syntax is

```
\genfrac{left-delim}{right-delim}{thickness}{mathstyle}
 {numerator}{denominator}
```

where

- left-delim is the left delimiter for the formula (default: none)
- right-delim is the right delimiter for the formula (default: none)
- thickness is the thickness of the fraction line, in the form $x$ pt (default: the normal weight, 0.4 pt ), for instance, 12 pt for 12 point width
- mathstyle is one of
- 0 for \displaystyle
- 1 for $\backslash t e x t s t y l e$
- 2 for $\backslash$ scriptstyle
- 3 for \scriptscriptstyle
- Default: Depends on the context. If the formula is being set in display style, then the default is 0 , and so on
- numerator is the numerator
- denominator is the denominator

All arguments must be specified. The empty argument, $\}$, gives the default value.

## Examples

1. \frac\{numerator\}\{denominator\}
is the same as
\genfrac $\}\}\}\}\{$ numerator\}\{denominator\}
2. $\backslash$ dfrac $\{$ numerator $\}$ denominator $\}$
is the same as
\genfrac $\}\}\}\{0\}\{$ numerator $\}$ \{denominator $\}$
3. \tfrac\{numerator\}\{denominator\}
is the same as
\genfrac\{\}\{\}\{\}\{1\}\{numerator\}\{denominator\}
4. \binom\{numerator\}\{denominator\}
is the same as
\genfrac\{(\}\{)\}\{0pt\}\{\}\{numerator\}\{denominator\}
5. Here are some more examples:

$$
\left.\left.\frac{a+b}{c} \quad \frac{a+b}{c} \quad \frac{a+b}{c} \quad \frac{a+b}{c} \quad\left[\begin{array}{c}
a+b \\
c
\end{array}\right]\right] \begin{array}{c}
a+b \\
c
\end{array}\right]
$$

typed as

```
\[
```

    \frac\{a + b\}\{c\} \quad
    \genfrac\{\}\{\}\{1pt\}\{\}\{a \(+b\}\{c\} \quad \backslash q u a d\)
    \genfrac \(\}\}\{1.5 \mathrm{pt}\}\}\{a+b\}\{c\}\) \quad
    \genfrac \(\}\}\{2 \mathrm{pt}\}\}\{\mathrm{a}+\mathrm{b}\}\{\mathrm{c}\}\) \quad
    \genfrac\{[\}\{]\}\{0pt\}\{\}\{a \(+b\}\{c\}\) \quad
    \(\backslash\) genfrac \(]\}\{[ \}\{0 p t\}\}\{a+b\}\{c\}\)
    \]

You can choose the delimiters from Table 7.1.

If a \genfrac construct is used repeatedly, you should name it. See Section 15.1 for user-defined commands.

### 8.6.2 Boxed formulas

The \boxed command puts its argument in a box, as in

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{2}
\end{equation*}
$$

typed as

```
\begin{equation}
 \boxed{ \int_{-\infty}^{\infty} e^{-x^{2}}\, dx
 = \sqrt{\pi} }
\end{equation}
```

The \boxed command can also be used in the argument of a \text command.
Note that
\fbox\{Hello world\}
and
\$\boxed\{\text\{Hello world\}\}\$
produce the same Hello world.
Morten Høgholm's mathtools package (see Section E. 1 on how to get it), contains many variants of boxes.

# Multiline math displays 

### 9.1 Visual Guide

${ }^{\mathrm{LAT}} \mathrm{E} \mathrm{X}$ is about typesetting math. It knows a lot about typesetting inline formulas, but not much about how to display a multiline formula to best reflect its meaning in a visually pleasing way. So you have to decide the visual structure of a multiline formula and then use the tools provided by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to code and typeset it.

For many mathematical documents the three constructs of Chapter 3 suffice: simple and annotated alignments, and the cases construct. To help you choose the appropriate tool for more complicated constructs, we start by introducing the basic concepts and constructions with the Visual Guide shown on the next page.

## Adjusted environments

$$
\begin{gathered}
x_{1} x_{2}+x_{1}^{2} x_{2}^{2}+x_{3} \\
x_{1} x_{3}+x_{1}^{2} x_{3}^{2}+x_{2} \\
x_{1} x_{2} x_{3} \\
\text { gather }
\end{gathered}
$$ one column, centered

$$
\begin{aligned}
& \left.\begin{array}{l}
\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2} \\
+\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right.
\end{array}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \\
& +\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5}\right)^{2} \\
& \text { multline } \\
& \text { flush left, centered, flush right }
\end{aligned}
$$

## Adjusted subsidiary environments

$$
\begin{aligned}
& \left.\qquad \begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \\
& \text { matrix } \\
& \text { multicolumn, centered } \begin{array}{ccccc}
a+b+c & u v & x-y & 27
\end{array} \quad f(x)=\left\{\begin{array}{lll}
-x^{2}, & \text { if } x<0 ; \\
\alpha+x, & \text { if } 0 \leq x \leq 1 ; \\
x^{2}, & \text { otherwise. }
\end{array}\right. \\
& \text { each column adjusted independently }
\end{aligned}
$$

## Aligned environments

$$
\begin{align*}
& f(x)=x+y z \quad g(x)=x+y+z \quad f(x)=x+y z \quad g(x)=x+y+z \\
& h(x)=x y+x z+y z \quad k(x)=(x+y)(x+z)(y+z) \quad h(x)=x y+x z+y z \quad k(x)=(x+y)(x+z)(y+z) \\
& \text { align } \\
& \text { multicolumn, aligned } \\
& \text { (17) }  \tag{18}\\
& \text { flalign } \\
& \text { multicolumn, aligned }
\end{align*}
$$

### 9.1.1 Columns

Multiline math formulas are displayed in columns. The columns are either adjusted, that is, centered, or set flush left or right, or aligned, that is, an alignment point is designated for each column and for each line. Moreover, the columns are either separated by the intercolumn space or adjacent with no separation.

## One column

As in Chapter 3, we start with a simple align:

$$
\begin{aligned}
r^{2} & =s^{2}+t^{2} \\
2 u+1 & =v+w^{\alpha}
\end{aligned}
$$

This is a single column, aligned at the $=$ signs, and coded with the align environment (see Section 3.4.2).

## Two columns

The annotated align, coded with the align environment,

$$
\begin{aligned}
x & =x \wedge(y \vee z) & \quad \text { (by distributivity) } \\
& =(x \wedge y) \vee(x \wedge z) & \text { (by condition (M)) } \\
& =y \vee z &
\end{aligned}
$$

has two columns. The first column is aligned like our example of simple align, but the second column is aligned flush left. There is a sizeable intercolumn space.

### 9.1.2 Subsidiary math environments

The cases example in Chapter 3:

$$
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
$$

introduces a new concept. The part of the formula to the right of $=$ is a multiline construct. This is an example of a subsidiary math environment that can only be used inside another math environment. It creates a "large math symbol", in this case

$$
\begin{cases}-x^{2}, & \text { if } x<0 \\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
$$

So the cases example:

$$
f(x)=\text { large math symbol }
$$

is a single line displayed formula, where "large math symbol" is replaced by the cases construct.

### 9.1.3 Adjusted columns

An adjusted column is either set centered, or flush left, or flush right. This may happen by default, built into the environment, or so specified in the code.

For instance, in the displayed formula

$$
\begin{gathered}
x_{1} x_{2}+x_{1}^{2} x_{2}^{2}+x_{3}, \\
x_{1} x_{3}+x_{1}^{2} x_{3}^{2}+x_{2}
\end{gathered}
$$

typeset with the gather environment, by default all the lines are centered.
On the other hand, in

$$
\left(\begin{array}{lrr}
1 & 100 & 115 \\
201 & 0 & 1
\end{array}\right)
$$

coded with the array subsidiary math environment, the first column is flush left, the second centered, the third flush right.

### 9.1.4 Aligned columns

Aligned columns, on the other hand, are only of one kind, aligned by you. For instance,

$$
\begin{array}{ll}
f(x)=x+y z & g(x)=x+y+z \\
h(x)=x y+x z+y z & k(x)=(x+y)(x+z)(y+z)
\end{array}
$$

is coded with the alignat environment. It has two aligned columns, both aligned at the $=$ sign.

### 9.1.5 Touring the Visual Guide

Figure 9.1, the Visual Guide, shows thumbnail pictures of the various kinds of multiline math environments and subsidiary math environments.

The first part of the Visual Guide illustrates gather and multline. The gather environment is a one-column, centered math environment-discussed in Section 9.2which is used to display a number of formulas collected into one multiline formula. In contrast, multline-discussed in Section 9.3-displays one long formula in a number of lines. The first line is set flush left, the last line set flush right, and the rest (if any) of the lines are centered.

The third part of the Visual Guide illustrates the align environment and two of its variants, alignat and flalign, discussed in Section 9.5.

Three adjusted subsidiary math environments-matrix, cases, and array-are illustrated in second part of the Visual Guide and presented in Section 9.7.

The aligned subsidiary math environments aligned and gathered look just like the align and gather environments, so they are not illustrated in the Visual Guide. The aligned and gathered environments-along with - ref-are discussed in Section 9.6, along with the split subsidiary math environment; this last one is illustrated in the last part of the Visual Guide.


### 9.2 Gathering formulas

The gather environment groups a number of one-line formulas, each centered on a separate line:

$$
\begin{gather*}
x_{1} x_{2}+x_{1}^{2} x_{2}^{2}+x_{3},  \tag{1}\\
x_{1} x_{3}+x_{1}^{2} x_{3}^{2}+x_{2},  \tag{2}\\
x_{1} x_{2} x_{3} . \tag{3}
\end{gather*}
$$

Formulas (1)-(3) are typed as follows:

```
\begin{gather}
 x_{1} x_{2}+\mp@subsup{x}{-}{\prime}{1}^{2} x_{2}^{2} + x_{3},\label{E:1.1}\\
 \mp@subsup{x}{-}{\prime}{1} \mp@subsup{x}{-}{\prime}{3}+\mp@subsup{x}{-}{\prime}{1}^{2} \mp@subsup{x}{-}{\prime}{3}^{2} + \mp@subsup{x}{-}{\prime}{2},\label{E:1.2}\\
 x_{1} x_{2} x_{3}.\label{E:1.3}
\end{gather}
```


## Rule ■ gather environment

1. Lines are separated with $\backslash \backslash$. Do not type a $\backslash \backslash$ at the end of the last line!
2. Each line is numbered unless it has a $\backslash$ tag or $\backslash$ notag on the line before the line separator $\backslash \backslash$.
3. No blank lines are permitted within the environment.

The gather* environment is like gather, except that all lines are unnumbered. They can still be \tag-ged.

It would seem natural to code formulas (1)-(3) with three equation environments:

```
\begin{equation}
 x_{1} x_{2}+\mp@subsup{x}{_}{\prime}{1}^{2} \mp@subsup{x}{_}{\prime}{2}^{2} + x_{3},\label{E:1.1}
\end{equation}
\begin{equation}\label
```

```
 x_{1} x_{3}+x_{1}^{2} x_{3}^{2} + x_{2},\label{E:1.2}
\end{equation}
\begin{equation}
 x_{1} x_{2} x_{3}.\label{E:1.3}
\end{equation}
```

Note how bad this looks typeset:

$$
\begin{align*}
& x_{1} x_{2}+x_{1}^{2} x_{2}^{2}+x_{3},  \tag{1}\\
& x_{1} x_{3}+x_{1}^{2} x_{3}^{2}+x_{2}, \tag{2}
\end{align*}
$$

### 9.3 Splitting long formulas

The multline environment is used to split one very long formula into several lines. The first line is set flush left, the last line is set flush right, and the middle lines are centered:
(4) $\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2}$

$$
\begin{aligned}
& +\left(y_{1} y_{2} y_{3} y_{4} y_{5}+y_{1} y_{3} y_{4} y_{5} y_{6}+y_{1} y_{2} y_{4} y_{5} y_{6}+y_{1} y_{2} y_{3} y_{5} y_{6}\right)^{2} \\
& +\left(z_{1} z_{2} z_{3} z_{4} z_{5}+z_{1} z_{3} z_{4} z_{5} z_{6}+z_{1} z_{2} z_{4} z_{5} z_{6}+z_{1} z_{2} z_{3} z_{5} z_{6}\right)^{2} \\
& \quad+\left(u_{1} u_{2} u_{3} u_{4}+u_{1} u_{2} u_{3} u_{5}+u_{1} u_{2} u_{4} u_{5}+u_{1} u_{3} u_{4} u_{5}\right)^{2}
\end{aligned}
$$

This formula is typed as

```
\begin\{multline\}\label\{E:mm2\} }
 (\(\left.x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\right)^{\wedge}\{2\} \backslash \backslash\)
 + (y_ \(\left.\mathrm{y}_{-} 1\right\} \mathrm{y}_{-}\{2\} \mathrm{y}_{-}\{3\} \mathrm{y}_{-}\{4\} \mathrm{y}_{-}\{5\}\)
 \(+y_{-}\{1\} y_{-}\{3\} y_{-}\{4\} y_{-}\{5\} y_{-}\{6\}\)
 \(+y_{-}\{1\} y_{-}\{2\} y_{-}\{4\} y_{-}\{5\} y_{-}\{6\}\)
 \(\left.+y_{-}\{1\} y_{-}\{2\} y_{-}\{3\} y_{-}\{5\} y_{-}\{6\}\right)^{\wedge}\{2\} \backslash \backslash\)
 + (\(z_{-}\{1\} z_{-}\{2\} z_{-}\{3\} z_{-}\{4\} z_{-}\{5\}\)
 \(+z_{-}\{1\} z_{-}\{3\} z_{-}\{4\} z_{-}\{5\} z_{-}\{6\}\)
 \(+z_{-}\{1\} z_{-}\{2\} z_{-}\{4\} z_{-}\{5\} z_{-}\{6\}\)
 \(\left.+z_{-}\{1\} z_{-}\{2\} z_{-}\{3\} z_{-}\{5\} z_{-}\{6\}\right) \wedge\{2\} \backslash \backslash\)
 \(+\left(u_{-}\{1\} u_{-}\{2\} u_{-}\{3\} u_{-}\{4\}+u_{-}\{1\} u_{-}\{2\} u_{-}\{3\} u_{-}\{5\}\right.\)
 \(\left.+u_{-}\{1\} u_{-}\{2\} u_{-}\{4\} u_{-}\{5\}+u_{-}\{1\} u_{-}\{3\} u_{-}\{4\} u_{-}\{5\}\right)^{\wedge}\{2\}\)
\end\{multline\} }
```


## Rule

multline environment

1. Lines are separated with $\backslash \backslash$. Do not type a $\backslash \backslash$ at the end of the last line!
2. The formula is numbered as a whole unless it is $\backslash t a g-g e d$ or the numbering is suppressed with $\backslash$ notag. (Alternatively, use the multline* environment.)
3. No blank lines are permitted within the environment.
4. Each line is a subformula (see Section 9.4.2).

If you are very observant, you may have noticed that we failed to type $\}+$ following the line separators of the formula. In Section 8.1.2, you were told that this omission would result in the second line being typeset as

$$
+\left(y_{1} y_{2} y_{3} y_{4} y_{5}+y_{1} y_{3} y_{4} y_{5} y_{6}+y_{1} y_{2} y_{4} y_{5} y_{6}+y_{1} y_{2} y_{3} y_{5} y_{6}\right)^{2}
$$

The multline environment, however, knows that a long formula is being broken and so typesets + as a binary operation.

A common mistake is to write multiline for multline, resulting in the message:

```
! LaTeX Error: Environment multiline undefined.
```

In the multline* environment, the formula is not numbered but can be $\backslash t a g-g e d$.
The indentation of the first and last lines is controlled by the \multlinegap length command, with a default of 10 points, unless there is a tag on one of those lines. You can adjust the indentation by enclosing the multline environment in a setlength environment (see Section 15.5.2 ), as follows:

```
\begin\{multline*\} }
 (\(\left.x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\right){ }^{\wedge}\{2\} \backslash \backslash\)
 + (\(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\}\)
 \(+x_{-}\{1\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
 \(+x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
 \(\left.+x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{5\} x_{-}\{6\}\right) \wedge\{2\} \backslash \backslash\)
 \(+\left(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\}+x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{5\}\right.\)
 \(\left.+x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\}+x_{-}\{1\} x_{-}\{3\} x_{-}\{4\}\right) \wedge\{2\}\)
\end\{multline*\} }
\begin\{setlength\}\{\multlinegap\}\{0pt\} }
 \begin\{multline*\} }
 (\(\left.x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\right) \wedge\{2\} \backslash \backslash\)
 + (\(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\}\)
 \(+x_{-}\{1\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
 \(+x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
```

```
 + x_{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{}{5} \mp@subsup{x}{-}{\prime}{6})^{2}\\
 + (x_{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{}{4} + \mp@subsup{x}{-}{\prime}{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{}{5}
 + x_{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{4} \mp@subsup{x}{-}{\prime}{5} + \mp@subsup{x}{-}{\prime}{1} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{\prime}{4})^{2}
 \end{multline*}
\end{setlength}
```

which typesets as

$$
\begin{aligned}
& \left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2} \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{1} x_{3} x_{4}\right)^{2}
\end{aligned}
$$

$\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2}$

$$
\begin{aligned}
& +\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{1} x_{3} x_{4}\right)^{2}
\end{aligned}
$$

Notice that the second variant is not indented.
Any line of a multline environment can be typeset flush left or right by making it the argument of a \shoveleft or \shoveright command, respectively (same with multline*). For instance, to typeset the second line of formula (4) flush left, as in

$$
\begin{aligned}
& \left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2} \\
& +\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5}\right)^{2}
\end{aligned}
$$

type the formula as follows:

```
\begin\{multline*\} }
 (\(\left.x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\right) \wedge\{2\} \backslash \backslash\)
 \shoveleft \(\left\{+\right.\) (\(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\}\)
 \(+x_{-}\{1\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
 \(+x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
 \(\left.\left.+x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{5\} x_{-}\{6\}\right) \wedge\{2\}\right\} \backslash \backslash\)
 \(+\left(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\}+x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{5\}\right.\)
 \(+x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\}\)
 \(\left.+x_{-}\{1\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\}\right)^{\wedge}\{2\}\)
\end\{multline*\} }
```

Observe that the entire line is the argument of the \shoveleft command, which is followed by $\backslash \backslash$ unless it is the last line of the environment.

### 9.4 Some general rules

### 9.4.1 General rules

Even though you have only seen a few examples of multiline math environments, I venture to point out now that the multiline math environments and subsidiary math environments share a number of rules.

## Rule ■ Multiline math environments

1. Lines are separated with $\backslash \backslash$. Do not type a $\backslash \backslash$ at the end of the last line!
2. No blank lines are permitted within an environment.
3. If an environment contains more than one formula, then, as a rule, each formula is numbered separately. If you add a \label command to a line, then the equation number generated for that line can be cross-referenced.
4. You can suppress the numbering of a line by using a \notag command on the line.
5. You can also override numbering with the \tag command, which works just as it does for equations (see Section 8.5).
6. \tag and \label should always precede the line separator $\backslash \backslash$ for lines that are regarded as formulas in their own right. For instance, the lines of the multline environment cannot be individually numbered or tagged. The $\backslash$ tag command works for individual lines, not for the environment as a whole.
7. For cross-referencing, use \label, \ref, and \eqref in the same way you would for an equation (see Section 10.4.2).
8. Each multiline math environment has a *-ed form, which suppresses numbering. Individual formulas can still be $\backslash$ tag-ged.

A \notag command placed after the environment is ignored, but a $\backslash$ tag command gives the error message
! Package amsmath Error: \tag not allowed here.

### 9.4.2 Subformula rules

A formula in the multline environment is split into a number of parts by $\backslash \backslash$ commands; for instance, formula (4) is split into three parts:

1. ( $\left.x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\right) \wedge\{2\}$
```
2. + (x_{1} x_ {2} x_ x3} x_ {4} x_ {5}
 + x_{1} x_{3} \mp@subsup{x}{-}{\prime}{4} \mp@subsup{x}{-}{\prime}{5} \mp@subsup{x}{-}{\prime}{6}
 + x_{1} x_{2} x_{4} \mp@subsup{x}{-}{\prime}{5} \mp@subsup{x}{-}{\prime}{6}
 + \mp@subsup{x}{-}{\prime}{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{\prime}{5} \mp@subsup{x}{-}{\prime}{6})^{2}
3. + (x_{1} x_{2} x_{3} x_{4}+\mp@subsup{x}{_}{\prime}{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{\prime}{5} +
 \mp@subsup{x}{-}{\prime}{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{4} \mp@subsup{x}{-}{\prime}{5}+\mp@subsup{x}{-}{\prime}{1} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{\prime}{4} \mp@subsup{x}{-}{\prime}{5})}\mp@subsup{)}{}{{}{2
```

Such parts of a formula are called subformulas.
The first line of the aligned formula $r^{2}=s^{2}+t^{2}$-from the simple alignment example in Section 3.4.2-which is typed as

$$
r^{\wedge}\{2\} \&=s \wedge\{2\}+t \wedge\{2\}
$$

is split into two parts:

1. $r^{\wedge}\{2\}$
2. $=s^{\wedge}\{2\}+t^{\wedge}\{2\}$

In general, in a line of an aligned formula, the first part is everything between the beginning of the line and the first \& symbol. There can then be a number of parts delimited by two consecutive \& symbols. Finally, the last part is from the last \& symbol to the end of the line or the line separator $\backslash \backslash$. These parts are also called subformulas.

Here are the last of the general rules.

## Rule ■ Subformula

1. Each subformula must be a formula that $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ can typeset independently.
2. If a subformula starts with the binary operation + or - , type it as $\}+$ or $\}-$.
3. If a subformula ends with the binary operation + or - , type it as $+\{ \}$ or $-\{ \}$.

Suppose that you want to split the formula

$$
x_{1}+y_{1}+\left(\sum_{i<5}\binom{5}{i}+a^{2}\right)^{2}
$$

just before the binomial coefficient. Try

```
\begin{multline}
 x_{1} + y_{1} + \left(\sum_{i < 5}\\\
 \binom{5}{i} + a^{2} \right)^{2}
\end{multline}
```

When typesetting this formula, you get the error message
! Missing \right. inserted.
because the first subformula violates the first subformula rule.

$$
x_{-}\{1\}+y_{-}\{1\}+\backslash \operatorname{left}^{( } \backslash \text { sum_ }_{-}\{i<5\}
$$

cannot be typeset by $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ because the $\backslash \operatorname{left}$ ( command must be matched by the \right command and some delimiter.

Testing for the first subformula rule is easy. Split the formula into its subformulas, and test each subformula separately by typesetting it.

### 9.4.3 Breaking and aligning formulas

You do not have to know where and how to break inline math formulas because $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ does all the work for you.

Unfortunately, multiline formulas are different. $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ gives you excellent tools for displaying multiline math formulas, but offers you no advice on deciding where to break a long formula into lines. And that is how it should be. You, the author, are the only judge of where to break a long formula so that the result is mathematically informative and follows the traditions of mathematical typesetting.

A strict set of rules is formulated in Mathematics into Type by Ellen Swanson, Arlene Ann O'Sean, and Antoinette Tingley Schleyer [58]. I state only three.

## Rule ■ Breaking displayed formulas

1. Try to break a long formula before a binary relation or binary operation.
2. If you break a formula before $\mathrm{a}+$ or - , start the next line with $\}+$ or $\}-$.
3. If you break a formula within a bracket, indent the next line so that it begins to the right of the opening bracket.

Formula (4) on page 212 illustrates the first rule. Here is an illustration of the third rule:

$$
\begin{aligned}
f(x, y, z, u)=[(x+y+z) & \times\left(x^{2}+y^{2}+z^{2}-1\right) \\
& \left.\times\left(x^{3}+y^{3}+z^{3}-u\right) \times\left(x^{4}+y^{4}+z^{4}+u\right)\right]^{2}
\end{aligned}
$$

The rules for aligning columns are similar.

## Rule ■ Aligning columns

1. Try to align columns at a binary relation or a binary operation.
2. If you align a column at a binary relation, put the \& symbol immediately to the left of the binary relation.
3. If you align a column at the binary operation + or - , put the \& symbol to the left of the binary operation.

### 9.4.4 Numbering groups of formulas

With most constructs in this chapter, you have a number of equations typeset together, arranged in some way, aligned or adjusted. Each equation is numbered separately, unless \tag-ged or \notag-ged. Often, you may want the equations to share a common number, but still be able to reference each equation separately.

You can change the numbering of the equations on page 211 in formulas (1)-(3) to (1), (1a), and (1b) as follows:
$\backslash$ begin\{gather\}
$x_{-}\{1\} x_{-}\{2\}+x_{-}\{1\} \wedge\{2\} x_{-}\{2\}$ ^\{2\} + $x_{-}\{3\}$,
\label\{E:1\}<br>
$x_{-}\{1\} x_{-}\{3\}+x_{-}\{1\} へ\{2\} x_{-}\{3\} \wedge\{2\}+x_{-}\{2\}$,
$\backslash \operatorname{tag}\{\backslash$ ref $\{\mathrm{E}: 1\}$ a\} $\backslash \backslash$
$x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} ; \operatorname{tag}\{\backslash r e f\{E: 1\} b\}$
\end\{gather\} }
produces the desired result:

$$
\begin{gather*}
x_{1} x_{2}+x_{1}^{2} x_{2}^{2}+x_{3},  \tag{1}\\
x_{1} x_{3}+x_{1}^{2} x_{3}^{2}+x_{2},  \tag{1a}\\
x_{1} x_{2} x_{3} \tag{1b}
\end{gather*}
$$

To obtain ( $1^{\prime}$ ) or ( $1^{\prime}$ ) type

```
\tag{\ref{E:1}$'$}
```

or
$\backslash \operatorname{tag}\{(\backslash \operatorname{ref}\{\mathrm{E}: 1\} \backslash$ textquoteright $)\}$
and for $\left(1_{a}\right)$, type
\tag\{\ref\{E:1\}\$\{\}_\{\text\{a\}\}\$\}

Alternatively, you may include the gather environment in a subequations environment (see Section 8.5):

$$
\begin{gather*}
x_{1} x_{2}+x_{1}^{2} x_{2}^{2}+x_{3},  \tag{5a}\\
x_{1} x_{3}+x_{1}^{2} x_{3}^{2}+x_{2},  \tag{5b}\\
x_{1} x_{2} x_{3}, \tag{5c}
\end{gather*}
$$

typed as

```
\begin\{subequations\}\label\{E:gp\} }
 \begin\{gather\} }
 \(x_{-}\{1\} x_{-}\{2\}+x_{-}\{1\} \wedge\{2\} x_{-}\{2\}^{\wedge}\{2\}+x_{-}\{3\}\),
 \label\{E:gp1\}\\
 \(x_{-}\{1\} x_{-}\{3\}+x_{-}\{1\} \wedge\{2\} x_{-}\{3\} \wedge\{2\}+x_{-}\{2\}\),
 \label\{E:gp2\}\\
 \(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\}, \backslash l a b e l\{E: g p 3\}\)
 \end\{gather\} }
\end\{subequations\} }
```

Then $\backslash$ eqref $\{\mathrm{E}: \mathrm{gp}\}$ references the whole group of equations as (5), while
\eqref $\{\mathrm{E}: \mathrm{gp} 1\}$, $\backslash$ eqref $\{\mathrm{E}: \mathrm{gp} 2\}$, and $\backslash$ eqref $\{\mathrm{E}: \mathrm{gp} 3\}$
reference the individual formulas as (5a), (5b), and (5c).

### 9.5 Aligned columns

The lines of multiline formulas are naturally divided into columns. In this section, we discuss how to typeset such formulas with aligned columns. All of these constructs are implemented with the align math environment and its variants.

In Section 3.4.2, you saw two simple, one-column examples of aligned columnswhich we called simple alignment-and a special case of aligned columns-which we called annotated alignment.

The align environment can also create multiple aligned columns. The number of columns is restricted only by the width of the page. In the following example, there are two aligned columns:

$$
\begin{array}{ll}
f(x)=x+y z & g(x)=x+y+z  \tag{6}\\
h(x)=x y+x z+y z & k(x)=(x+y)(x+z)(y+z)
\end{array}
$$

typed as

```
\begin{align}\label{E:mm3}
 f(x) &= x + yz & g(x) &= x + y + z\\
 h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z)
 \notag
\end{align}
```


first column
(6)

| $\begin{aligned} & f(x)=x+y z \\ & h(x)=x y+x z+y z \end{aligned}$ | $g(x)_{1}^{\prime}=x+y+z$ |
| :---: | :---: |
|  | $k(x)=(x+y)(x+z)(y+z)$ |
|  |  |
|  | space ' |
| alignment points of first column | alignment points of second column |

Figure 9.2: Two aligned columns: source and typeset.
Use Figure 9.2 to visualize how the alignment points in the source turn into alignment points in the typeset formula and the role played by the intercolumn space. Remember that the visual layout of the source is for your benefit only.

In a multicolumn align environment, the ampersand (\&) plays two roles. It is a mark for the alignment point and it is also a column separator. In the line
$f(x) \&=x+y z$
$\& g(x) \&=x+y+z$
the two columns are

$$
f(x) \&=x+y z
$$

and

$$
g(x) \&=x+y+z
$$

In each column, we use a single ampersand to mark the alignment point. Of the three \& symbols in the previous example,

- The first \& marks the alignment point of the first column.
- The second \& is a column separator that separates the first and second columns.
- The third \& marks the alignment point of the second column.

I use the convention of typing a space on the left of an alignment point \& and no space on the right, and of putting spaces on both sides of \& as a column separator.

If the number of columns is three, then there should be five \&'s in each line. Evennumbered \&'s are column separators and odd-numbered \&'s are alignment marks.

## Rule ■ Ampersands

If there are $n$ aligned columns, then each line should have at most $2 n-1$ ampersands. Even-numbered \&'s are column separators; odd-numbered \&'s mark the alignment points.

So for a single aligned column, you have to place one alignment point for each line. For two aligned columns, you have to place at most three alignment points for each line. The beginning of the line to the second \& is the first column, then from the second \& to the end of the line is the second column. Each line of each column has an alignment point marked by \& .

A column in a line may be empty-a gap is produced-or it may have only a few columns. Both of these are illustrated by

| $a_{1}$ | $b_{2}$ | $c_{1}$ |
| :---: | :---: | :---: |
|  | $c_{2}$ |  |
| $a_{3}$ |  |  |

typed as

```
\begin{align*}
 & a_1 & & & &c_1\\
 & & &b_2 & &c_2\\
 & a_3
\end{align*}
```


### 9.5.1 An align variant

A variant of align is the flush alignment environment flalign, which moves the leftmost column as far left and the rightmost column as far right as space allows, making more room for the formula. Here is formula (6) again, followed by the flalign variant:

$$
\begin{align*}
& f(x)=x+y z  \tag{6}\\
& h(x)=x y+x z+y z
\end{align*}
$$

$$
\begin{aligned}
& g(x)=x+y+z \\
& k(x)=(x+y)(x+z)(y+z)
\end{aligned}
$$

$$
\text { (7) } \begin{aligned}
f(x) & =x+y z \\
h(x) & =x y+x z+y z
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=x+y+z \\
& k(x)=(x+y)(x+z)(y+z)
\end{aligned}
$$

The variant is typed as follows:

```
\begin{flalign}\label{E:mm3fl}
 f(x) &= x + yz & g(x) &= x + y + z\\
 h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z)
 \notag
\end{flalign}
```


### 9.5.2 eqnarray, the ancestor of align

${ }^{\text {ETEX}}{ }_{E}$ 's original aligned math environment is eqnarray. Here is an example:

```
\begin{eqnarray}
 x & = & 17y\\
 y & > & a + b + c
 \end{eqnarray}
```

which typesets as

$$
\begin{align*}
& x=17 y  \tag{8}\\
& y>a+b+c
\end{align*}
$$

You can type the same formulas with align:

```
\begin{align}
 x & = 17y\\
 y & > a + b + c
\end{align}
```

which typesets as

$$
\begin{align*}
& x=17 y  \tag{10}\\
& y>a+b+c \tag{11}
\end{align*}
$$

In the eqnarray environment the spacing is based on the spacing of the columns rather than on the spacing requirements of the symbols.

I mention eqnarray not for historical reasons but for a very practical one. Unfortunately, a large number of journal submissions still use this construct, and have to be recoded in the editorial offices. Be kind to your editor, and do not use eqnarray.

### 9.5.3 The subformula rule revisited

Suppose that you want to align the formula

$$
x_{1}+y_{1}+\left(\sum_{i}\binom{5}{i}+a^{2}\right)^{2}
$$

with

$$
\left(\sum_{i}\binom{5}{i}+\alpha^{2}\right)^{2}
$$

so that the $+a^{2}$ in the first formula aligns with the $+\alpha^{2}$ in the second formula. You might try typing

```
\begin{align*}
 x_{1} + y_{1} + \left(\sum_i \binom{5}{i}
 &+ a^{2} \right)^{2}\\
 \left(\sum_i \binom{5}{i} &+ \alpha^{2} \right)^{2}
\end{align*}
```

But when you typeset this formula, you get the error message

```
! Extra }, or forgotten \right.
```

This alignment structure violates the subformula rule because $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ cannot typeset

```
x_{1} + y_{1} + \left(\sum_i \binom{5}{i}
```

so it is not a subformula.
As another simple example, try to align the + in $\binom{a+b}{2}$ with the + in $x+y$ :

```
\begin\{align\} }
 \binom\{a \& +b\(\}\{2\} \backslash \backslash\)
 x \& y
\end\{align\} }
```

When typesetting this formula, you get the error message

```
! Missing } inserted.
```

Again, ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ cannot typeset the subformula $\backslash$ binom\{a.
To align the two formulas in the first example, add a $\backslash$ phantom command to push the second line to the right:

```
\begin{align*}
 &x_{1} + y_{1} + \left(\sum_{i < 5} \binom{5}{i}
 + a^{2} \right)^{2}\\
 &\phantom{x_{1} + y_{1} + {}}
 \left(\sum_{i < 5} \binom{5}{i} + \alpha^{2}
 \right)^{2}
\end{align*}
```

yielding

$$
\begin{aligned}
x_{1}+y_{1}+ & \left(\sum_{i<5}\binom{5}{i}+a^{2}\right)^{2} \\
& \left(\sum_{i<5}\binom{5}{i}+\alpha^{2}\right)^{2}
\end{aligned}
$$

### 9.5.4 The alignat environment

Another variant of the align environment is the alignat environment, which is one of the most important alignment environments. While the align environment calculates how much space to put between the columns, the alignat environment leaves spacing up to the user. It is important to note that the alignat environment has a required argument, the number of columns.

Here is formula (6) typed with the alignat environment:

```
\begin{alignat}{2}\label{E:mm3A}
 f(x) &= x + yz & g(x)&= x + y + z\\
 h(x) &= xy + xz + yz & k(x) &= (x + y)(x + z)(y + z)
 \notag
\end{alignat}
```

which typesets as

$$
\begin{align*}
& f(x)=x+y z \quad g(x)=x+y+z  \tag{12}\\
& h(x)=x y+x z+y z k(x)=(x+y)(x+z)(y+z)
\end{align*}
$$

This attempt did not work very well because alignat did not separate the two formulas in the second line. So you must provide the intercolumn spacing. For instance, if you want a \qquad space between the columns, as in

$$
\begin{array}{ll}
f(x)=x+y z & g(x)=x+y+z  \tag{13}\\
h(x)=x y+x z+y z & k(x)=(x+y)(x+z)(y+z)
\end{array}
$$

then type the formula as

```
\begin{alignat}{2}\label{E:mm3B}
 f(x) &= x + yz & g(x) &= x + y + z\\
 h(x) &= xy + xz + yz \qquad & k(x) &= (x+y)(x+z)(y+z)
 \notag
\end{alignat}
```

The alignat environment is especially appropriate when annotating formulas where you would normally want a \quad between the formula and the text. To obtain

$$
\begin{array}{rlrl}
x & =x \wedge(y \vee z) & & \text { (by distributivity) }  \tag{14}\\
& =(x \wedge y) \vee(x \wedge z) & (\text { by condition (M)) } \\
& =y \vee z &
\end{array}
$$

type

```
\begin\{alignat\}\{2\}\label\{E:mm4\} }
 x \& \(=\mathrm{x}\) \wedge (y \vee z) \&
 \(\& \backslash q u a d \backslash t e x t\{(b y\) distributivity) \(\} \backslash \backslash\)
 \&= (x \wedge y) \vee (x \wedge z) \& \&
 \quad \(\backslash \operatorname{text}\{(\) by condition (M)) \}\notag \(\backslash \backslash\)
 \&= y \vee z \notag
\end\{alignat\} }
```

alignat is very important for typing systems of equations such as

$$
\begin{align*}
(A+B C) x+\quad C y & =0,  \tag{15}\\
E x+(F+G) y & =23 . \tag{16}
\end{align*}
$$

typed as follows:
\begin\{alignat\}\{2\} }
$(A+B C) x \&+\{ \} \& C \quad \& y=0, \backslash \backslash$
Ex \& $\&\} \&(F+G) \& y=23$.
\end\{alignat\} }
Note again $+\{ \}$. See the subformula rule in Section 9.4.2.
As a last example, consider

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} & =y_{1},  \tag{17}\\
a_{21} x_{1}+a_{22} x_{2}+a_{24} x_{4} & =y_{2},  \tag{18}\\
a_{31} x_{1}+a_{33} x_{3}+a_{34} x_{4} & =y_{3} . \tag{19}
\end{align*}
$$

typed as

```
\begin\{alignat\}\{4\} }
 \(a_{-}\{11\} x_{-} 1 \&+a_{-}\{12\} x_{-} 2 \& \&+a_{-}\{13\} x_{-} 3 \& \&\)
 \&\&= y_1, \\
 \(a_{-}\{21\} x_{-} 1 \&+a_{-}\{22\} x_{-} 2\) \&\& \&\&+ \(a_{-}\{24\} x_{-} 4\)
 \(\& \&=y _2, \backslash \backslash\)
 a_\{31\}x_1 \& \&\&+ a_\{33\}x_3 \&\&+ a_\{34\}x_4
 \&\&= y_3.
\end\{alignat\} }
```

Note that the argument of alignat does not have to be precise. If you want two columns, the argument can be 2 , or 3 , or any larger number. If you want to, you can simply type 10 and just ignore the argument. You may define a new environment (see Section 15.2.1) that does just that.

### 9.5.5 Inserting text

The \intertext command places one or more lines of text in the middle of an aligned environment. For instance, to obtain

$$
\begin{equation*}
h(x)=\int\left(\frac{f(x)+g(x)}{1+f^{2}(x)}+\frac{1+f(x) g(x)}{\sqrt{1-\sin x}}\right) d x \tag{20}
\end{equation*}
$$

The reader may find the following form easier to read:

$$
=\int \frac{1+f(x)}{1+g(x)} d x-2 \arctan (x-2)
$$

you would type
\begin\{align\}\label\{E:mm5\} }
$h(x) \&=\ i n t \backslash l e f t($

$$
\backslash \operatorname{frac}\{f(x)+g(x)\}
$$

$$
\left\{1+f^{\wedge}\{2\}(x)\right\}+
$$

$$
\backslash f r a c\{1+f(x) g(x)\}
$$

\{ \sqrt\{1 - \sin $x\}\}$
\right) <br>, dx<br>
\intertext\{The reader may find the following form
easier to read:\}
\& $=$ \int $\backslash$ frac $\{1+f(x)\}$
$\{1+g(x)\}$
$\backslash, d x-2 \backslash \arctan (x-2) \backslash$ notag
\end\{align\} }
Notice how the equal sign in the first formula is aligned with the equal sign in the second formula even though a line of text separates the two.

Here is another example, this one using align*:

$$
f(x)=x+y z \quad g(x)=x+y+z
$$

The reader may also find the following polynomials useful:

$$
h(x)=x y+x z+y z \quad k(x)=(x+y)(x+z)(y+z)
$$

L
is typed as

```
\begin{align*}
 f(x) &= x + yz & \qquad g(x) &= x + y + z\\
 \intertext{The reader may also find the following
 polynomials useful:}
 h(x) &= xy + xz + yz
 & \qquad k(x) &= (x + y) (x + z) (y + z)
\end{align*}
```

The \intertext command must follow a line separator command, $\backslash \backslash$ or $\backslash \backslash *$ (see Section 9.9). If you violate this rule, you get the error message

```
! Misplaced \noalign. \intertext #1->\noalign
 {\penalty \postdisplaypenalty
 \vskip ...
```

The text in \intertext can be centered using a center environment or with the  command (see Section 6.3).

### 9.6 Aligned subsidiary math environments

A subsidiary math environment is a math environment that can only be used inside another math environment. Think of it as creating a "large math symbol".

In this section, we discuss aligned subsidiary math environments. We discuss adjusted subsidiary math environments, including cases, in Section 9.7.

### 9.6.1 Subsidiary variants

The align, alignat, and gather environments (see Sections 9.5, 9.5.4, and 9.2) have subsidiary versions. They are called aligned, alignedat, and gathered. To obtain

$$
\begin{array}{llrl}
x & =3+\mathbf{p}+\alpha & & \mathbf{p}=5+a+\alpha \\
y & =4+\mathbf{q} & \mathbf{q} & \mathbf{q}=12 \\
z & =5+\mathbf{r} & \text { using } & \mathbf{r}=13 \\
u & =6+\mathbf{s} & & \mathbf{s}=11+d
\end{array}
$$

```
type
\[
 \begin{aligned}
 x &= 3 + \mathbf{p} + \alpha\\
 y &= 4 + \mathbf{q}\\
 z &= 5 + \mathbf{r}\\
 u &=6 + \mathbf{s}
 \end{aligned}
 \text{\qquad using\qquad}
 \begin{gathered}
 \mathbf{p} = 5 + a + \alpha\\
 \mathbf{q} = 12\\
 \mathbf{r} = 13\\
 \mathbf{s} = 11 + d
 \end{gathered}
\]
```

Note how the list of aligned formulas

$$
\begin{aligned}
& x=3+p+\alpha \\
& y=4+\mathbf{q} \\
& z=5+\mathbf{r} \\
& u=6+\mathbf{s}
\end{aligned}
$$

and the list of centered formulas

$$
\begin{gathered}
\mathbf{p}=5+a+\alpha \\
\mathbf{q}=12 \\
\mathbf{r}=13 \\
\mathbf{s}=11+d
\end{gathered}
$$

are treated as individual large symbols.
The aligned, alignedat, and gathered subsidiary math environments follow the same rules as align and gather. The aligned subsidiary math environment allows any number of columns, but you must specify the intercolumn spacing as in the alignat environment.

You can use the aligned subsidiary math environment to rewrite formula (5) from Section 3.4.2 so that the formula number is centered between the two lines:

$$
\begin{align*}
h(x) & =\int\left(\frac{f(x)+g(x)}{1+f^{2}(x)}+\frac{1+f(x) g(x)}{\sqrt{1-\sin x}}\right) d x \\
& =\int \frac{1+f(x)}{1+g(x)} d x-2 \arctan (x-2) \tag{21}
\end{align*}
$$

is typed as

```
\begin{equation}\label{E:mm6}
\begin{aligned}
 h(x) &= \int \left(
 \frac{ f(x) + g(x) }
 {1+f^{2}(x) } +
 \frac{ 1 + f(x)g(x) }
 { \sqrt{1 - \sin x} }
 \right) \, dx\\
 &= \int \frac{ 1 + f(x) }
 { 1 + g(x) } \, dx - 2 \arctan (x - 2)
\end{aligned}
\end{equation}
```

See Section 9.6 .2 for a better way to split a long formula.
Symbols, as a rule, are vertically centrally aligned. This is not normally an issue with math symbols, but it may be important with large symbols created by subsidiary math environments. The subsidiary math environments, aligned, gathered, and array, take $c, t$, or $b$ as optional arguments to force vertically centered, top, or bottom alignment, respectively. The default is c (centered). To obtain

$$
\begin{array}{llrl}
x & =3+\mathbf{p}+\alpha & \mathbf{p}=5+a+c \\
y & =4+\mathbf{q} & \mathbf{q}=12 \\
z & =5+\mathbf{r} & \mathbf{r}=13 \\
u & =6+\mathbf{s} & \text { using } & \mathbf{s}=11+d
\end{array}
$$

for example, you would type

```
\[
 \begin{aligned}[b]
 x &= 3 + \mathbf{p} + \alpha\\
 y &= 4 + \mathbf{q}\\\
 z &= 5 + \mathbf{r}\\
 u &=6 + \mathbf{s}
\end{aligned}
\text{\qquad using\qquad}
\begin{gathered}[b]
 \mathbf{p} = 5 + a + \alpha\\
 \mathbf{q} = 12\\
 \mathbf{r} = 13\\
 \mathbf{s} = 11 + d
\end{gathered}

There is no numbering or \(\backslash t a g\)-ing allowed in subsidiary math environments because \(\mathrm{EAT}_{\mathrm{E}} \mathrm{X}\) does not number or tag what it considers to be a single symbol.

\subsection*{9.6.2 Split}

The split subsidiary math environment is used to split a long formula into aligned parts. There are two major reasons to use split:
1. The math environment that contains it considers the split environment to be a single equation, so it generates only one number for it.
2. If a split environment appears inside an align environment, the alignment point of the split environment is recognized by align and is used in aligning all the formulas in the align environment.
To illustrate the first reason, consider
\[
\begin{align*}
& \left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2} \\
& \quad+\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \tag{22}
\end{align*}
\]
typed as
\begin\{equation\}\label\{E:mm7\} }
\begin\{split\} }
\[
\begin{aligned}
\left(x_{-}\{1\} x_{-}\{2\} \&\right. & \left.x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\right){ }^{-}\{2\} \backslash \backslash \\
\& & +\left(x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\}\right. \\
& +x_{-}\{1\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\} \\
& +x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\} \\
& \left.+x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{5\} x_{-}\{6\}\right)^{\wedge}\{2\}
\end{aligned}
\]
\end\{split\} }
\end\{equation\} }
See also the two examples of split in the sampart.tex sample article in Section 11.3 and in the samples folder (see page 4).

To illustrate the second reason, here is an example of a split subsidiary math environment within an align environment:
\[
\begin{align*}
f & =\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2} \\
& =\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \tag{23}\\
g & =y_{1} y_{2} y_{3} \tag{24}
\end{align*}
\]
which is typed as
```

\begin{align}\begin{split}
f \&= (x_{1} x_{2} x_{3} x_{4} \mp@subsup{x}{-}{\prime}{5} \mp@subsup{x}{-}{\prime}{6})~{2}<br>
\&=(x_{1} \mp@subsup{x}{-}{\prime}{2} \mp@subsup{x}{-}{\prime}{3} \mp@subsup{x}{-}{\prime}{4} \mp@subsup{x}{-}{\prime}{5}

```
```

        \(+x_{-}\{1\} x_{-}\{3\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
        \(+x_{-}\{1\} x_{-}\{2\} x_{-}\{4\} x_{-}\{5\} x_{-}\{6\}\)
        \(\left.+x_{-}\{1\} x_{-}\{2\} x_{-}\{3\} x_{-}\{5\} x_{-}\{6\}\right) \wedge\{2\}\),
    \end\{split\}\\}
    g \& \(=y_{-}\{1\} y_{-}\{2\} y_{-}\{3\} . \backslash l a b e l\{E: m m 9\}\)
    \end\{align\} }

```

Notice the \(\backslash \backslash\) command following \(\backslash\) end\{split\} to separate the lines for align.

\section*{Rule ■ split subsidiary math environment}
1. split can only be used inside another math environment, such as displaymath, equation, align, gather, flalign, gathered and their *-ed variants.
2. A split formula has only one number, automatically generated by \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\), or one tag from a \tag command. Use the \notag command to suppress numbering.
3. The \label, \tag, or \notag command must precede \begin\{split\} or follow } \end\{split\}. }

If you try to use split outside a displayed math environment, you get the error message
! Package amsmath Error: \begin\{split\} won't work here. }
You may want to read the discussion of AMS document classes and amsmath package options in Section 11.5 that modify the placement of equation numbers.

\subsection*{9.7 Adjusted columns}

In an adjusted multiline math environment, the columns are adjusted so that they are displayed centered, flush left, or flush right, instead of aligned (as in Section 9.5). Since you have no control line by line over the alignment of the columns, \& has only one role to play, it is the column separator.

In Sections 9.2 and 9.3, we discussed two adjusted one-column math environments, gather and multline. All the other adjusted constructs are subsidiary math environments. For example, a matrix environment (see Section 9.7.1) produces a multicolumn centered display:
\[
\left(\begin{array}{cccc}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 1340
\end{array}\right)=\left(\begin{array}{cccc}
1 & 100 & 115 & 27 \\
201 & 0 & 1 & 1340
\end{array}\right)
\]

The array environment (see Section 9.7.2) produces a multicolumn adjusted display:
\[
\left(\begin{array}{cccr}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 1340
\end{array}\right)=\left(\begin{array}{rrrr}
1 & 100 & 115 & 27 \\
201 & 0 & 1 & 1340
\end{array}\right)
\]

The columns are centered, flush left, or flush right. In this example, the first matrix has three centered columns and one flush right column, while the second matrix has four flush right columns. A variant, cases (see Sections 3.4.3 and 9.7.3), produces two columns set flush left:
\[
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \tag{25}\\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
\]

\subsection*{9.7.1 Matrices}

Use the matrix subsidiary math environment to typeset matrices. For example,
```

$$
\begin{equation*}
    \left(
    \begin{matrix}
        a + b + c & uv & x - y & 27\\
        a+b & u + v & z & 1340
    \end{matrix}
    \right) =
    \left(
    \begin{matrix}
            1 & 100 & 115 & 27\\
            201 & 0 & 1 & 1340
    \end{matrix}
    \right)
\end{equation*}
$$

```
produces
\[
\left(\begin{array}{cccc}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 1340
\end{array}\right)=\left(\begin{array}{cccc}
1 & 100 & 115 & 27 \\
201 & 0 & 1 & 1340
\end{array}\right)
\]

If you use matrix on its own, i.e., outside a math environment,
\(\backslash\) begin\{matrix\}
\(a+b+c \& u v \quad \& x-y \& 27 \backslash \backslash\)
\(a+b \quad \& u+v \& z \quad \& 134\)
\end\{matrix\} }
you get the error message
! Missing \$ inserted.
<inserted text>

\section*{\$}
\(1.5 \backslash\) begin\{matrix\}
obliquely reminding you that matrix is a subsidiary math environment.
The matrix subsidiary math environment provides a matrix of up to 10 centered columns. If you need more columns, you have to ask for them. The following example sets the number of columns to 12 :
```

$$
\begin{equation}\label{E:mm12}
    \setcounter{MaxMatrixCols}{12}
    \begin{matrix}
        1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
        1 & 2 & 3 & \hdotsfor{7} & 11 & 12
    \end{matrix}
\end{equation}
$$

```
produces
\(\left.\begin{array}{cccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 2 & 3 & \ldots & & & & & \ldots & & & \ldots\end{array}\right)\).

We discuss \setcounter and other counters further in Section 15.5.1.
You can have dots span any number of columns with the \hdotsfor command. The argument of the command specifies the number of columns to fill (which is one more than the number of \&'s the command replaces). The \hdotsfor command must either appear at the beginning of a row or immediately following an ampersand (\&). If you violate this rule, you get the error message
```

! Misplaced \omit.
\multispan \#1->\omit

```
\mscount \#1\relax \loop \ifnum
 \mscount ...
1.12 \end\{equation\} }

The \hdotsfor command also takes an optional argument, a number that multiplies the spacing between the dots. The default is 1 . For instance, if we replace \hdotsfor\{7\} in the previous example by \hdotsfor [3] \{7\}, then we get
\begin{tabular}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & \(\ldots\) &. &. &. &. &. &. & 11 & 12
\end{tabular}

We can replace a part of a matrix column with a large figure.
\[
a=\left(\begin{array}{cc}
\left(a_{11}\right) & \\
\cdots & \mathbf{0} \\
\left(a_{n 1}\right) &
\end{array}\right), \quad\left(a_{k 1}\right)=\left(\begin{array}{ccc}
0 \ldots 0 & 1 & 0 \ldots 0 \\
& 0 & \\
\mathbf{0} & \cdots & \mathbf{0} \\
& 0 &
\end{array}\right)
\]
typed as
```

\newcommand{\BigFig}[1]{\parbox{12pt}{\Huge \#1}}
\newcommand{\BigZero}{\BigFig{0}}

$$
a=\left(
\begin{matrix}
(a_{11})\\
\cdots & \BigZero \\
(a_{n1})\\
\end{matrix}
\right) ,\quad
(a_{k1})=\left(
\begin{matrix}
0\ldots 0 & 1 & 0\ldots 0\\
    & 0\\
\BigZero & \cdots & \BigZero\\
    & 0\\
\end{matrix}
\right)
$$

```

\section*{Matrix variants}

A matrix may be enclosed by delimiters (see Section 7.5.1) in a number of different ways:
\[
\left.\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\left(\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\right) \quad\left[\begin{array}{cc}
a+b+c & u v \\
a+b & c+d
\end{array}\right]\right\}
\]

The first matrix is typed as
\(\backslash\) begin\{matrix\}
\(a+b+c \& u v \backslash \backslash\)
\(a+b \quad \& c+d\)
\end\{matrix\} }

The others are typed in the same way, except that they use the pmatrix, bmatrix, vmatrix, Vmatrix, and Bmatrix environments, respectively. We can use other delimiters, as in
```

\begin{equation*}
\left(
\begin{matrix}

| 1 | $\&$ | 0 | $\& \backslash$ dots | $\& ~ 0 \backslash \backslash$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | $\&$ | 1 | $\& \backslash \operatorname{dots}$ | $\& ~ 0 \backslash \backslash$ |
| \vdots | $\& \backslash$ \vdots | $\& \backslash d d o t s$ | $\& \backslash v d o t s \backslash \backslash$ |  |
| 0 | $\&$ | 0 | $\& \backslash \operatorname{dots}$ | $\& 1$ |

    \end{matrix}
    \right]
    \end{equation*}

```
which produces
\[
\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
\]

This example also uses vertical dots provided by the \vdots commands and diagonal dots provided by the \ddots commands.

\section*{Small matrix}

If you put a matrix in an inline math formula, it may be too large. Instead, use the smallmatrix environment. Compare \(\left(\begin{array}{cc}a+b+c & u v \\ a+b & c+d\end{array}\right)\), typed as
\(\$ \backslash\) begin\{pmatrix\}
\(a+b+c \& u v \backslash \backslash\)
\(\mathrm{a}+\mathrm{b} \quad \& \mathrm{c}+\mathrm{d}\)
\end\{pmatrix\}\$ }
with the small matrix \(\left(\begin{array}{cc}a+b+c & u v \\ a+b & c+d\end{array}\right)\), typed as
\$\left(
\begin\{smallmatrix\} }
\(a+b+c \& u v \backslash \backslash\)
\(a+b \quad \& c+d\)
\end\{smallmatrix\} }
\right)\$
There are no delimited variants of smallmatrix similar to those of matrix. Instead, use the \left and \right commands with delimiters to enclose a small matrix. The \hdotsfor command does not work in a small matrix.

\subsection*{9.7.2 Arrays}

The array subsidiary math environment is similar to the matrix subsidiary math environment. There are two major differences, however. For an array you must specify the alignment of each column and you have more options to customize it.

The first matrix in the introduction to Section 9.7 would be typed as follows using the array subsidiary math environment:
```

$$
\begin{equation*}
    \left(
    \begin{array}{cccc}
        a + b + c & uv & x - y & 27\\
        a + b & u + v & z & 134
    \end{array}
    \right)
\end{equation*}
$$

```
which produces
\[
\left(\begin{array}{cccc}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 134
\end{array}\right)
\]

\section*{Rule ■ array subsidiary math environment}
1. Adjacent columns are separated by an ampersand (\&).
2. The argument of \begin\{array\} is mandatory. The argument is a series of the } letters \(1, r\), or \(c\), signifying that the corresponding column in the array should be set flush left, flush right, or centered, respectively.

The matrix
\[
\left(\begin{array}{cccr}
a+b+c & u v & x-y & 27 \\
a+b & u+v & z & 134
\end{array}\right)
\]
could not have been typeset with matrix since the last column is set flush right. Of course, this is not quite true. In a matrix environment, \hfill 27 would force the number 27 to be set flush right (see Section 5.8.4).

If the argument of \begin\{array\} is missing, as in }
\(\backslash\) begin\{equation\}
\begin\{array\} }
\(a+b+c \& u v \quad \& x-y \& 27 \backslash \backslash\)
\(a+b \quad \& u+v \quad \& z \quad \& 134\)
\end\{array\} }
\end\{equation\} }

LETE \(_{E} \mathrm{X}\) generates the error message
! Package array Error: Illegal pream-token (a): 'c' used.
If you change the first entry of the matrix to \(c+b+a\), then the error message is
```

! Extra alignment tab has been changed to \cr.
<recently read> \endtemplate

```
1.5 c + b + a \&
 uv \& x - y \& 27\\

Note that the first character in \(\mathrm{c}+\mathrm{b}+\mathrm{a}\) is not an
Illegal character in array arg.
because \(c\) is one possible argument of \begin\{array\}. }
If the closing brace of the argument of \(\backslash\) begin\{array\} is missing, as in
```

$$
\begin{equation}
    \begin{array}{cccc
        a + b + c & uv & x - y & 27\\
        a + b & u + v & z & 134
    \end{array}
\end{equation}
$$

```
you get the error message
Runaway argument?
\(\{c c c c a+b+c \& u v \quad \& x-y \& 27 \backslash \backslash a+b\) \& u + v \ETC.
! Paragraph ended before \@array was complete.
In fact, the argument of array can be more complex than stated in the rule. Indeed, the array subsidiary math environment can take any argument that the tabular environment can take (see Section 6.6). For instance, here is a matrix with headers:
\begin{tabular}{r|rrr}
& \(a\) & \(b\) & \(c\) \\
\hline 1 & 1 & 1 & 1 \\
2 & 1 & -1 & -1 \\
2 & 2 & 1 & 0
\end{tabular}
typed as
```

$$
\begin{array}{r|rrr}
    & a & b & c \\
\hline
1& 1 & 1 & 1 \\
2 & 1 & -1 & -1 \\
2 & 2 & 1 & 0
\end{array}
$$

```

In Section 9.7.1 we have the matrix example:
\[
a=\left(\begin{array}{cc}
\left(a_{11}\right) & \\
\cdots & \mathbf{O} \\
\left(a_{n 1}\right) &
\end{array}\right)
\]

If rows are spanned, we need to use array instead of matrix:
\[
\left[\begin{array}{llll}
a & b & \mathbf{O} \\
c & d & \mathbf{O} \\
\mathbf{0} & m & m & n
\end{array}\right]
\]
typed as (the \(\backslash\) BigZero command is defined on page 234)
```

\left[ \hspace{-\arraycolsep}
% spacing is automatic with matrix but not with array
$$
\begin{array}{cccc}
a & b &\multicolumn{2}{c}{}\\
c & d &\multicolumn{2}{c}
    {\raisebox{1.5ex}[0pt]{\BigZero}}\\\
\multicolumn{2}{c}{}& m & n \\
\multicolumn{2}{c}
    {\raisebox{1.5ex}[0pt]{\BigZero}}& k & l
\end{array}
$$
\hspace{-\arraycolsep} \right]
\end{equation*}

```

\subsection*{9.7.3 Cases}

The cases environment is also a subsidiary math environment. Here is the example from Section 3.4.3 and the introduction to this section:
\[
f(x)= \begin{cases}-x^{2}, & \text { if } x<0 \\ \alpha+x, & \text { if } 0 \leq x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
\]

It is typed as
```

$$
\begin{equation}
    f(x)=
    \begin{cases}
        -x^{2}, &\text{if $x < 0$;}\\
        \alpha + x, &\text{if $0 \leq x \leq 1$;}\\
        x^{2}, &\text{otherwise.}
    \end{cases}
\end{equation}
$$

```

It would be easy to code the cases environment as a special case of the array subsidiary math environment:
```

$$
\begin{equation}
    f(x) =
    \left\{
    \begin{array}{ll}
        -x^{2}, &\text{if $x < 0$;}\\
        \alpha + x, &\text{if $0 \leq x \leq 1$;}\\
        x^{2}, &\text{otherwise.}
    \end{array}
    \right.
\end{equation}
$$

```
or of the alignedat subsidiary math environment:
\begin\{equation*\} }
 \(f(x)=\)
 \left\\{ }
 \begin\{alignedat\}\{2\} }
 \&-x^\{2\}, \&\&\quad\text\{if \$x < 0\$;\}\\
 \(\& \backslash a l p h a+x, \quad \& \& \backslash q u a d \backslash t e x t\{i f \$ 0 \backslash l e q ~ x ~ \ l e q ~ 1 \$;\} \backslash \backslash\)
 \&x^\{2\}, \&\&\quad\text\{otherwise.\}
 \end\{alignedat\} }
 \right.
\end\{equation*\} }

\subsection*{9.8 Commutative diagrams}

The amscd package provides the CD subsidiary math environment for typesetting simple commutative diagrams. To use it, make sure that the command
```

\usepackage{amscd}

```
is in the preamble of the document.
For instance, to obtain

type
\
```

\begin{CD}

```
 A @>>> B\\
 @VVV
 @VVV\\
 C \(@=\)
 D
 \end\{CD\} }
\]

A commutative diagram is a matrix made up of two kinds of rows, horizontal rows, that is, rows with horizontal arrows; and vertical rows, rows with vertical arrows. For example,
```

A @>>> B

```
is a typical horizontal row. It defines two columns and a connecting horizontal arrow @>>>. There may also be more than two columns, as in
```

A @>>> B @>>> C @= D @<<< E @<<<< F

```

The connecting pieces can be:
- Stretchable right arrows, @>>>
- Stretchable left arrows, @<<<
- Stretchable equal signs, @=
- Blanks, ©.

The label above a stretchable arrow should be typed between the first and second > or < symbols, whereas the label below should be typed between the second and third > or < symbols. You can have both.

The following is a typical vertical row containing vertical arrows:
@VVV @VVV @AAA
The vertical pieces could be
- Stretchable down arrows, @VVV
- Stretchable up arrows, @AAA
- Double vertical lines, @। or @ \vert
- Blanks, ©.

The vertical arrows are placed starting with the first column.
The label to the left of a stretchable vertical arrow should be typed between the first and second V or A , whereas the label on the right should be typed between the second and third V or A symbols. You can have both.

These constructs are illustrated in
\[
\begin{array}{rll}
\mathbb{C} \xrightarrow{H_{1}} \mathbb{C} \xrightarrow{H_{2}} \mathbb{C} \\
P_{c, 3} \downarrow & P_{\bar{c}, 3} \downarrow & \\
& \\
\mathbb{C} \xrightarrow{H_{1}} \mathbb{C} \xrightarrow{P_{-c, 3}} \\
\\
& \mathbb{C}
\end{array}
\]
typed as
\
\begin\{CD\} }
\mathbb\{C\} @>H_\{1\}>> \mathbb\{C\} @>H_\{2\}>>\mathbb\{C\}\\
@VP_\{c,3\}VV @VP_\{\bar\{c\},3\}VV @VVP_\{-c,3\}V\\
\mathbb\{C\} @>H_\{1\}>> \mathbb\{C\} @>H_\{2\}>> \mathbb\{C\}
\end\{CD\} }
\]
Here is another example utilizing the \text command, followed by its source:

```

$$
\begin{CD}
        A @>\log>> B @>>\text{bottom}> C
            @= D @<<< E
            @<<< F\\
        @V\text{one-one}VV @. @AA\text{onto}A @|\\
        X @= Y @>>> Z
        @>>> U\\
        @A\beta AA @AA\gamma A @VVV @VVV\\
        D @>\alpha>> E @>>> H
            @. I\\
    \end{CD}
$$

```

Diagrams requiring more advanced commands should be done with a drawing (or drafting) application or with specialized packages. The AMS recommends Kristoffer H. Rose and Ross Moore's xy-pic package (see Section E.1).

\subsection*{9.9 Adjusting the display}

By default, the math environments described in this chapter do not allow page breaks. While a page break in a cases environment is obviously not desirable, it may be acceptable in an align or gather environment. You can allow page breaks by using the
```

\allowdisplaybreaks

```
command. It allows page breaks in a multiline math environment within its scope. For instance,
```

{\allowdisplaybreaks
$$
\begin{align}\label{E:mm13}
    a &= b + c,\\
    d &= e + f,\\
    x &= y + z,\\
    u &= v + w.
\end{align}
$$
}% end of \allowdisplaybreaks

```
allows a page break after any one of the first three lines.
Within the scope of an \allowdisplaybreaks command, use the \(\backslash \backslash *\) command to prohibit a break after that line. The line separators \(\backslash \backslash\) and \(\backslash \backslash *\) can use an optional argument to add some additional interline space (see Section 5.7.2).

Just before the line separator command (\(\backslash \backslash\)), include a \displaybreak command to force a break, or a
\displaybreak[0]
command to allow one. \displaybreak \([n]\), where \(n\) is 1 , 2 , or 3 , specifies the intermediate steps between allowing and forcing a break. \displaybreak[4] is the same as \displaybreak. You can easily visualize these rules:
allow display break =
```

\displaybreak[0] \displaybreak[1] ... \displaybreak[4]
= \displaybreak
= force display break

```

Note the similarity between the displaybreak sequence and the pagebreak sequence in Section 5.7.3.

If you want to allow page breaks in all multiline math environments in your document, place the \allowdisplaybreaks [1] command in the preamble of your document. The optional argument can be varied from 1 to 4 , in order of increasing permissiveness.

Note that none of the subsidiary math environments are affected by any variant of the \displaybreak or the \allowdisplaybreaks commands.

\section*{\(L^{A} T_{E} X\) documents}

In this chapter, we take up the organization of shorter documents. Longer documents and books are discussed in Part VI.

If you are writing a simple article, start with a template (see Sections 4.2 and 11.4), then you can safely ignore much of the material discussed in this chapter. In more complicated articles you may need the material discussed in this chapter.

Section 10.1 discusses document structure in general, Section 10.2 presents the preamble. Section 10.3 discusses the top matter, in particular, the abstract environment. Section 10.4 presents the main matter, including sectioning, cross-referencing, tables, and figures. Section 10.5 covers the back matter, including the bibliography and index.

In Section 10.1-10.5 we discuss the logical design of a \({ }^{\text {ETEX }} \mathrm{E}\) document. The visual design is largely left to the document class. In Section 10.6, however, we briefly discuss one frequently adjusted aspect of visual design, the page style.

Figure 10.1: The structure of a LTE \(^{2} \mathrm{X}\) document.

\subsection*{10.1 The structure of a document}

The source file of a \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) document is divided into two main parts: the preamble and the body (see Figure 10.1).

Preamble This is the portion of the source file before the
\(\backslash\) begin\{document\}
command. It contains definitions and instructions that affect the entire document.
Body This is the content of the document environment. It contains all the material to be typeset.

These statements oversimplify the situation somewhat. For instance, you can define a command in the preamble to typeset some text that will appear wherever the command is used in the body, but the text is actually typed in the preamble. Nevertheless, I hope the division between the preamble and the body is clear.

The body is divided into three parts:
Top matter This is the first part of the body. It is concluded with the \maketitle command. Traditionally it included only the \title, the \author, and the \date commands. The top matter is derived from these commands and from it the title page of an article was designed. This evolved to include a lot more information about the author(s), for instance, their e-mail addresses, academic affiliations, home pages, and about the article, for instance, research support, subject classification. The typeset top matter now is split into several locations, the top and bottom of the first page and the bottom of the last page. See pages 286 and 288 for an example and Section 18.1.2 for more components that can be used in longer documents and books.

Main matter This is the main part of the document, including any appendices.
Back matter This is the material that is typeset at the end of the document. For a typical shorter document, the back matter is just the bibliography. See Section 18.1.2 for more information about additional components-such as the index-that are often used in longer documents and books.

\subsection*{10.2 The preamble}

You were introduced to the preamble of a document in Section 4.1. Recall that the preamble contains the crucial \documentclass line, specifying the document class and the options that modify its behavior. For instance,
\documentclass[draft,reqno] \{amsart\}
loads the document class amsart with the draft option, which paints a slug in the margin indicating lines that are too wide (see Section 5.7.1), and the reqno option, which places the equation numbers on the right (see Section 11.5).
article is the most popular legacy document class (see Section 12.1). The command
\documentclass[titlepage,twoside]\{article\}
loads the document class article with the titlepage option, which creates a separate title page and places the abstract on a separate page, and the twoside option, which formats the typeset article for printing on both sides of the paper.

The \documentclass command is usually followed by the \usepackage commands, which load IATEX enhancements called packages. For instance,
\usepackage\{latexsym\}
loads a package that defines some additional \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) symbol names (see Section 12.3), whereas
\usepackage[demo] \{graphicx\}
loads the graphicx package (see Section 10.4.3) with the demo option that inserts rectangles in place of the illustrations. Document class options are also passed on to the packages as possible options, so
```

\documentclass[demo] {amsart}

```
\usepackage\{graphicx\}
would also load the graphicx package with the demo option unless it is invoked with

\section*{\usepackage[final]\{graphicx\}}

Any document class options that are not relevant for a package are ignored.
\usepackage commands can also be combined:
\usepackage\{amssymb,latexsym\}
is the same as
\usepackage\{amssymb\}
\usepackage\{latexsym\}
Document class files have a cls extension, whereas package files are designated by the sty extension. The document class amsart is defined in the amsart.cls file, the graphicx package is defined in the graphicx.sty file. You may define your own packages, such as the newlattice package described in Section 15.3.

The preamble normally contains any user-defined commands (see Chapter 15) and the proclamation definitions (see Section 6.4). Some commands can only be in the preamble. \DeclareMathOperator is such a command (see Section 7.6.2) and so is \numberwithin (see Section 7.3). If you put such a command in the body, for example, \DeclareMathOperator, you get an error message:
! LaTeX Error: Can be used only in preamble.
1.103 \DeclareMathOperator

There is one command that may only be placed before the
```

\documentclass{...}

```
line:

\section*{\NeedsTeXFormat\{LaTeX2e\}[2005/12/01]}

This command checks the version of \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) being used to typeset the document and issues a warning if it is older than December 1, 2005 or whatever date you specified. Use this optional date argument if your document contains a feature that was introduced on or after the date specified or if an earlier version had a bug that would materially affect the typesetting of your document.

For instance, if you use the \textsubscript command, introduced in the December 1, 2005 release (see page 311), then you may use the \(\backslash\) NeedsTeXFormat line shown above. \(\mathrm{ETE}_{\mathrm{E}} \mathrm{X}\) now hardly changes from year to year, so this command is rarely used except in document class files or package files. See, however, the discussion on page 311.

\subsection*{10.3 Top matter}

The top matter of an article is part of the article body and, as a rule, it contains the material used to create the "title page" and, optionally, an abstract.

Discussion of the top matter should take place in the context of a particular document class. We discuss the top matter of the amsart document class in Section 4.2, and we continue discussing it in much more detail in Section 11.2. The top matter of the article document class is covered in Section 12.1.1.

Long documents, such as books, have rather complicated top matter such as tables of contents (see Chapter 18). In this section, we only discuss the abstract.

\subsection*{10.3.1 Abstract}

Most standard document classes, except those for letters and books, make provision for an abstract, typed in an abstract environment.

The document class formats the heading as Abstract, or some variant, and, as a rule, typesets the text of the abstract in smaller type with wider margins.

The amsart document class requires that you place the abstract environment before the \(\backslash\) maketitle command (see Figure 10.1). See the abstract in the sample article intrart. tex on page 37. If you forget to place it there, you get the warning

Class amsart Warning:
Abstract should precede \maketitle in AMS
documentclasses; reported on input line 21.
and the abstract is typeset wherever the abstract environment happens to be placed.
In the article document class you place the abstract after the \maketitle command. If you place the abstract before the \maketitle command, the abstract is placed on page 1 , and the article starts on page 2 .

If the abstract and the "footnotes" from the top matter fill the first page, the second page has no running head. To fix this, follow the \maketitle command with the \clearpage command (see Section 5.7.3).

\subsection*{10.4 Main matter}

The main matter contains most of the essential parts of the document, including the appendices.

We discuss now how to structure the main matter. We describe sectioning in Section 10.4.1, cross-referencing in Section 10.4.2, and tables and figures in Section 10.4.3.

\subsection*{10.4.1 Sectioning}

The main matter of a typical shorter document is divided into sections. See Section 18.1.1 for a discussion on sectioning longer documents.

\section*{Sections}
\({ }^{\mathrm{LAT}} \mathrm{X}\) X is instructed to start a section with the \(\backslash\) section command, which takes the title of the section as its argument. This argument may also be used for the running head and it is also placed in the table of contents (see Section 18.2), which means that you need to protect fragile commands with the \protect command (see Section 5.3.3). ETTEX automatically assigns a section number and typesets the section number followed by the section title.

Any \section command may be followed by a \label command, so that you can refer to the section number generated by \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\), as in
\section\{Introduction\}\label\{S:intro\}
The command \(\backslash\) ref \{S:intro\} refers to the number of the section and the command \(\backslash\) pageref \(\{\mathrm{S}\) :intro\} refers to the number of the typeset page where the section title appears.

\section*{Other sectioning commands}

A section may be subdivided into subsections, which may themselves be divided into subsubsections, paragraphs, and subparagraphs. Subsections are numbered within a section (in Section 1, they are numbered 1.1, 1.2, and so on). Here is the whole hierarchy:
```

\section

\subsection

        \subsubsection
            \paragraph
            \subparagraph
    ```

It is important to understand that the five levels of sectioning are not just five different styles for typesetting section headers but they form a hierarchy. You should never have a subsection outside a section, a subsubsection outside a subsection, and so on. For instance, if the first sectioning command in your document is \subsection, the subsections are numbered \(0.1,0.2, \ldots\). Or if in the first section of your document
the first sectioning command is \subsubsection, the subsubsections are numbered \(1.0 .1,1.0 .2, \ldots\). Both are clearly undesirable.

There are two additional sectioning commands provided by the report and by the book document classes (book and amsbook): \chapter and \part (see Section 18.1.1).

Any sectioning command may be followed by a \label command so that you can refer to the number (if any) generated by \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) and the page on which it appears (see Section 10.4.2).

There is also the seldom used top level \specialsection command. Articles do not have parts and chapters, but sometimes a long article may require further division using the \specialsection command.

\section*{The form of sectioning commands}

All sectioning commands take one of the following three forms, illustrated below with the \section command:

Form 1 The simplest form is
\section\{title\}
where \(t i t l e\) is the section title, of course. You need to protect any fragile commands in title with the \protect command (see Section 5.3.3).

Form 2 The sectioning command may have an optional argument
```

\section[short_title]{title}

```

The optional short_title argument is used in the running head. See Section 18.2 on what goes into the table of contents. Protect any fragile commands in short_title with the \(\backslash\) protect command (see Section 5.3.3).

Form 3 Finally, we consider the *-ed version
```


## title

```

There are no section numbers printed and the title is not included in the running head. Remember that if you * a section, all subsections, and so on, must also be *-ed to avoid having strange section numbers.

\section*{Sectioning commands typeset}

Consider the following text:
```


## 1. Introduction

We shall discuss the main contributors of this era.

### 1.1. Birkhoff's contributions

```
```

    \subsubsection{The years 1935--1945}\label{SSS:1935}
    Going to Oxford was a major step.
    \paragraph{The first paper}
    What should be the definition of a universal algebra?
    \subparagraph{The idea}
    One should read Whitehead very carefully.
    ```

This is how it looks typeset in the amsart document class:

\section*{1 Introduction}

We shall discuss the main contributors of this era.

\subsection*{1.1 Birkhoff's contributions}

\subsection*{1.1.1 The years 1935-1945}

Going to Oxford was a major step.

The first paper What should be the definition of a universal algebra?
The idea One should read Whitehead very carefully.

Notice that paragraphs and subparagraphs are not displayed prominently by the AMS.
By contrast, look at the same text typeset in the legacy article document class:

\section*{\(\Gamma\)}

\section*{1. Introduction}

We shall discuss the main contributors of this era.

\subsection*{1.1. Birkhoff's contributions.}
1.1.1. The years 1935-1945. Going to Oxford was a major step. The first paper. What should be the definition of a universal algebra? The idea. One should read Whitehead very carefully.

This illustrates vividly one huge difference between the two document classes, the visual handling of sectioning.

Section 15.5.1 discusses how you can change the format of the section numbers, and how to specify which sectioning levels are to be numbered.

Section 2.2 of The \(L^{A} T_{E} X\) Companion, 2nd edition [46] explains how to change the layout of section headings, especially useful for document class designers.

\section*{Appendix}

In the main matter, if the article contains appendices, mark the beginning of the appendices with the \appendix command. After the \appendix command, the \section command starts the appendices (for books, see Section 18.1.2):
```

\appendix

```
\section\{A proof of the Main Theorem\}\label\{S:geom\}

This produces Appendix A with the given title, typeset just like a section.
Note that appendices may be labeled and cross-referenced like any other section. In an appendix, subsections are numbered A.1, A.2, and so on, subsubsections within A. 1 are numbered A.1.1, A.1.2, and so on.

Let me repeat, \appendix is not like \section. It is not a command with an argument. Appendices are named by arguments of the \section-or for books, \chapter-commands placed after the \appendix command.

\subsection*{10.4.2 Cross-referencing}

There are three types of cross-referencing available in \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) :
1. Symbolic referencing with \(\backslash r e f\) and \(\backslash e q r e f\) for equations
2. Page referencing with \pageref
3. Bibliographic referencing with \cite

In this section, we discuss the first two, while bibliographies are discussed in Section 10.5.1 and in Chapter 16.

\section*{Symbolic referencing}

Wherever \({ }^{\mathrm{AT}} \mathrm{EX}\) can automatically generate a number in your document, you can place a \label command
\label\{symbol\}
Then, at any place in your document, you can use the \(\backslash\) ref command
```

[symbol](#symbol)

```
to place that number in the document. We call symbor the label.
You can use labels for sectioning units, equations, figures, tables, items in an enumerated list environment (see Section 6.2.1), as well as for theorems and other proclamations.

If the equation labeled \(E:\) int is the fifth equation in an article, then \({ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) stores the number 5 for the label \(E: i n t\), so \(\backslash r e f\{E: i n t\}\) produces the number 5 . If equations are numbered within sections (see Section 7.3), and an equation is the third equation in Section 2, then \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) stores the number 2.3 for the label E :int, so the reference \ref \(\{\mathrm{E}\) :int \(\}\) produces the number 2.3.

Example 1 The present section starts with the command
\section\{Main matter\}\label\{S:MainMatter\}
So \ref\{S:MainMatter\} produces the number 10.4 and we get the number of the typeset page where the section title appears with \pageref\{S:MainMatter\}, which is 251 .

\section*{Example 2}
```

$$
\begin{equation}\label{E:int}
    \int_{0}^{\pi} \sin x \, dx = 2.
\end{equation}
$$

```

In this case, \(\backslash\) ref \(\{E:\) int \(\}\) produces the number of the equation, \eqref \(\{\mathrm{E}: \mathrm{int}\}\) produces the number of the equation in parentheses.

Tip If you have to reference an equation in the statement of a theorem, always use \(\backslash e q r e f\). Do not use \eqref to reference anything but proclamations. (See the \itemref command introduced in Section 15.1.2.)

\section*{Example 3}
\begin\{theorem\}\label\{T:fund\} }
Statement of theorem.
\end\{theorem\} }
The reference \(\backslash\) ref \(\{T: f u n d\}\) produces the number of the theorem.

Tip Typeset a document twice to see a change in a cross-reference.

See Section D.3.4 for a discussion of how \({ }^{A} T_{E} X\) stores these numbers and why you have to typeset twice. If you typeset only once, and \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) suspects that the cross-references have not been updated, you get a warning:

LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.

\section*{Rule 1 ■ \label command}

The argument of the \label command is a string of letters, punctuation marks, and digits. It is case sensitive, so S : intro is different from S :Intro.

\section*{Rule 2 ■ \label command}

Place a \(\backslash\) label command immediately after the command that generates the number.

The following is not compulsory but advisable.

Tip When referencing:
see Section~ \(\backslash\) ref \(\{\mathrm{S}:\) Intro\} proved in Theorem~ \(\backslash\) ref \(\{T:\) main \(\}\)
or
see Sections \({ }^{\sim} \backslash r e f\left\{S:\right.\) Intro\} and \({ }^{\sim} \backslash r e f\{S: m a i n\}\)
use ties (\({ }^{\sim}\)).

It is difficult to overemphasize how useful automatic cross-referencing can be when writing a document.

Tip Make your labels meaningful to yourself, so they are easy to remember. Systematize your labels. For example, start the label for a section with \(\mathrm{S}:\), theorem with T : , lemma with L: , and so on.

When you are cross-referencing, even if you follow these tips, it may not be easy to remember a label. David Carlisle's showkeys package may help you out. It is part of the tools distribution (see Section 12.3.1 and Section E.1). Include the line
```

\usepackage{showkeys}

```
in the preamble of your document. The showkeys package shows all symbolic references in the margin of the typeset document. With the notcite option, my preference,
\usepackage[notcite] \{showkeys\}
showkeys does not show the labels for bibliographic references. When the document is ready for final typesetting, then comment out this line.

Section 2.4 of The \({ }^{A} T T_{E} X\) Companion, 2nd edition [46] describes varioref, a package which extends the power of \ref, and xr, a package for referencing external documents.

\section*{Page referencing}

The command
\pageref\{symbol\}
produces the number of the typeset page corresponding to the location of the command \label\{symbol\}. For example, if the following text is typeset on page 5,

There may be three types of problems with the construction of such lattices. \label\{problem\}
and you type
Because of the problems associated with the construction (see page \({ }^{\sim} \backslash\) pageref \(\{\) problem\})
anywhere in the document, \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) produces

\section*{\(\Gamma\)}

Because of the problems associated with the construction (see page 5)

\section*{L}

Because of the way ITEX typesets a page, page references may be off by one. See the discussion in Section 18.6 on how to guarantee that the page number is correct.

\subsection*{10.4.3 Floating tables and illustrations}

Many documents contain tables and illustrations. These must be treated in a special way since they cannot be broken across pages. If necessary, \(\mathrm{LT}_{\mathrm{E}} \mathrm{X}\) moves-floatsa table or an illustration to the top or bottom of the current or the next page if possible and further away if not.

ETEX provides the table and the figure environments for typesetting floats. The two are essentially identical except that the figure environments are named Figure 1, Figure 2, and so on, whereas the table environments are numbered as Table 1, Table 2, and so on.

\section*{Tables}

A table environment is set up as follows:
```

Place the table here

Table 1: title

```

The \caption command is optional and may also precede the table. The optional \(\backslash\) label command must be placed between the command \caption and the command \(\backslash e n d\{t a b l e\}\). The label is used to reference the table's number. A table environment can have more than one table, each with its own caption.

The table environment is primarily used for tables made with the tabular or similar environments (see Section 6.6). There are many examples of tables in this book, for instance, Section 5.4 has four.

If your document uses the twocolumn document class option, the table environment produces tables that span only one column and the table* environment produces tables that span both columns. Such tables can be placed only at the top of a page.

\section*{Figures}

Illustrations, also called graphics or figures, include drawings, scanned images, digitized photos, and so on. These can be inserted with a figure environment:
```

Place the graphics here
Figure 1: title

```

The above discussion of captions and labels for tables also applies to figures. Like the table environment, if your document uses the twocolumn document class option, the figure environment produces figures that span only one column, but the figure* environment produces figures that span both columns. However, these figures can be placed only at the top of a page.

The standard way of including a graphics file is with the commands provided by the graphicx package by David Carlisle and Sebastian Rahtz, which is part of the \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) distribution (see Section 12.3). Save your graphics in EPS (Encapsulated PostScript) or PDF (Portable Document Format) format. Your graphics can also be made within a picture environment, an approach that is neither encouraged nor discussed in this book.

Using the graphicx package, a typical figure is specified as follows:
```


Figure 2: title

```

The illustration circle.eps is included with the command
```



```
without the extension! \(\mathrm{IT}_{\mathrm{E}} \mathrm{X}\) and the graphicx package assumes the eps extension. On the other hand, versions of \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) that produce a typeset file in PDF format assume the pdf extension.

If you have to scale the graphics image, say to \(68 \%\) of its original size, use the command
```



```

For instance, the figure on page 526 is included with the commands
```


Figure 3: The structure of \protect\LaTeX.

```

\section*{Float control}

The table and figure environments may have an optional argument, with which you can influence IATEX's placement of the typeset table. The optional argument consists of one to four letters:
- b, the bottom of the page
- h , here (where the environment appears in the text)
- t , the top of the page
- p, a separate page

For instance,
\begin\{table\}[ht] }
requests \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) to place the table "here" or at the "top" of a page. The default is [tbp] and the order of the optional arguments is immaterial, for example, [th] is the same as [ht]. If \(h\) is specified, it takes precedence, followed by \(t\) and \(b\).

LTEX has more than a dozen internal parameters that control a complicated algorithm that determines the placement of tables and figures. If you want to override these parameters for one table or figure only, add an exclamation mark (!) to the optional argument. For instance, \([!\mathrm{h}]\) requests that this table or figure be placed where it is in the source file even if this placement violates the rules as set by some of the parameters. For a detailed discussion of the float mechanism, see Chapter 6 of The \(L^{A} T_{E} X\) Companion, 2nd edition [46].

The \suppressfloats command stops \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) from placing any more tables or figures on the page it appears on. An optional argument \(t\) or \(b\) (but not both) prohibits placement of floats at the top or bottom of the current page. The table or figure that is suppressed appears on the next page or later in the document, if necessary.

Your demands and ETEX's float mechanism may conflict with one another with the result that \(\mathrm{EATE}_{\mathrm{E}} \mathrm{X}\) may not place material where you want it. The default values
of the float placement parameters are good only for documents with a small number of floating objects. Combining two tables or illustrations into one sometimes helps. The \clearpage command not only starts a new page with the \newpage command, but also forces \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) to print all the tables and figures it has accumulated but not yet placed in the typeset document. See also some related commands discussed in Section 5.7.3.

For more information on graphics, see Chapter 10 of The LATEX Companion, 2nd edition [46] and Chapter 2 of The \({ }^{A T} T_{E} X\) Graphics Companion [17]. See also the documentation for the graphicx package in the \(\mathrm{IT}_{\mathrm{E}} \mathrm{X}\) distribution (see Section 12.3).

\subsection*{10.5 Back matter}

The back matter of an article is very simple, as a rule. It is either empty or consists of only a bibliography. A long document, such as a book, may have more complicated back matter (see Chapter 18). In this section, we discuss only the bibliography and a very simple index.

\subsection*{10.5.1 Bibliographies in articles}

The simplest way to typeset a bibliography is to type it directly into the article. For an example, see the bibliography in the intrart.tex article (on page 43). This sample bibliography contains two examples, one short and one long, of each of the seven most frequently used kinds of items.

You type the text of a bibliography in a thebibliography environment, as shown in the following examples.
\begin\{thebibliography\}\{99\} }
\bibitem\{hA70\}
Henry~H. Albert,
\emph\{Free torsoids\},
Current trends in lattice theory.
D. \({ }^{\sim}\) Van Nostrand, 1970.
\bibitem\{hA70a\}
Henry \({ }^{\sim}\) H. Albert,
\emph\{Free torsoids\},
Current trends in lattice theory
(G.\\,H. Birnbaum, ed.).
vol. ~7, D. ~Van Nostrand, Princeton, January, 1970,
no translation available, pp.~173--215 (German).
\bibitem\{sF90\}
Soo-Key Foo,
\emph\{Lattice Constructions\},
Ph.D. thesis, University of Winnebago, 1990.
```

\bibitem{sF90a}
Soo-Key Foo,
\emph{Lattice Constructions},
Ph.D. thesis, University of Winnebago, Winnebago, MN,
December 1990, final revision not yet available.
\bibitem{gF86}
Grant~H. Foster,
\emph{Computational complexity in lattice theory},
tech. report, Carnegie Mellon University, 1986.
\bibitem{gF86a}
Grant NH. Foster,
\emph{Computational complexity in lattice theory},
Research Note 128A, Carnegie Mellon University,
Pittsburgh, PA, December, 1986,
research article in preparation.
\bibitem{pK69}
Peter Konig,
\emph{Composition of functions}.
Proceedings of the Conference on Universal Algebra
(Kingston, 1969).
\bibitem{pK69a}
Peter Konig,
\emph{Composition of functions}.
Proceedings of the Conference on Universal Algebra
(G. ^H. Birnbaum, ed.).
vol.~7, Canadian Mathematical Society,
Queen's Univ., Kingston, ON,
available from the Montreal office,
pp.~1--106 (English).
\bibitem{wL75}
William~A. Landau,
\emph{Representations of complete lattices},
Abstract: Notices Amer. Math. Soc. **18**, 937.
\bibitem{wL75a}
William~A. Landau,
\emph{Representations of complete lattices},
Abstract: Notices Amer. Math. Soc. **18**, 937,
December, 1975.
\bibitem{gM68}
George~A. Menuhin,
\emph{Universal algebra}.
D. ~Van Nostrand, Princeton, 1968.

```
```

\bibitem{gM68a}
George~A. Menuhin,
\emph{Universal algebra}. 2nd ed.,
University Series in Higher Mathematics, vol. ^58,
D. ~Van Nostrand, Princeton,
March, 1968 (English), no Russian translation.
\bibitem{eM57}
Ernest~T. Moynahan,
\emph{On a problem of M. Stone},
Acta Math. Acad. Sci. Hungar.
**8**~(1957), 455--460.
\bibitem{eM57a}
Ernest~T. Moynahan,
\emph{On a problem of M. Stone},
Acta Math. Acad. Sci. Hungar.
**8**~(1957), 455--460
(English), Russian translation available.
\end{thebibliography}

```

Figure 10.2 shows a typeset version of this bibliography in the amsart document class.

By contrast, look at the same bibliography typeset in the legacy article document class in Figure 10.3.

You can find these entries in the document inbibl.tpl in the samples folder (see page 4).

I use the convention that the label for a \bibitem consists of the initials of the author and the year of publication. The first cited publication by Andrew B. Reich in 1987 would have the label aR87 and the second, aR87a. Of course, you can use any label you choose, but such conventions make the items easier to reuse.

The thebibliography environment takes an argument-in the previous example, this argument is 99-telling \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) that the widest reference number it must generate is two digits wide. For fewer than 10 items, use 9 and for 100 or more items, use 999.

If the argument of \begin\{thebibliography\} is missing, you get the error } message
! LaTeX Error: Something's wrong--perhaps
a missing \item.
Each bibliographic item is introduced with \bibitem, which is used like the \label command. In your text, use \cite, in a similar way to \eqref-it provides the number enclosed in brackets. So if the 13th bibliographic item is introduced with
\bibitem\{eM57\}
then
\cite\{eM57\}
refers to that item and typesets it as [13]. The bibliography of the article itself is automatically numbered by \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\). It is up to the author to make sure that the listing of the bibliographic items is in the proper order.

Tip Do not leave spaces in a \cite command. For example, \cite\{eM57〕\} produces [?] indicating an unknown reference.

You can use \cite to cite two or more items in the form
\cite\{hA70,eM57\}
which typesets as [1, 13]. There is also an optional argument for \cite to specify additional information. For example,

\section*{References}
[1] Henry H. Albert, Free torsoids, Current trends in lattice theory. D. Van Nostrand, 1970.
[2] Henry H. Albert, Free torsoids, Current trends in lattice theory (G. H. Birnbaum, ed.). vol. 7, D. Van Nostrand, Princeton, January, 1970, no translation available, pp. 173-215 (German).
[3] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, 1990.
[4] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990, final revision not yet available.
[5] Grant H. Foster, Computational complexity in lattice theory, tech. report, Carnegie Mellon University, 1986.
[6] Grant H. Foster, Computational complexity in lattice theory, Research Note 128A, Carnegie Mellon University, Pittsburgh, PA, December, 1986, research article in preparation.
[7] Peter Konig, Composition of functions. Proceedings of the Conference on Universal Algebra (Kingston, 1969).
[8] Peter Konig, Composition of functions. Proceedings of the Conference on Universal Algebra (G. H. Birnbaum, ed.). vol. 7, Canadian Mathematical Society, Queen's Univ., Kingston, ON, available from the Montreal office, pp. 1-106 (English).
[9] William A. Landau, Representations of complete lattices, Abstract: Notices Amer. Math. Soc. 18, 937.
[10] William A. Landau, Representations of complete lattices, Abstract: Notices Amer. Math. Soc. 18, 937, December, 1975.
[11] George A. Menuhin, Universal algebra. D. Van Nostrand, Princeton, 1968.
[12] George A. Menuhin, Universal algebra. 2nd ed., University Series in Higher Mathematics, vol. 58, D. Van Nostrand, Princeton, March, 1968 (English), no Russian translation.
[13] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[14] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460 (English), Russian translation available.

Figure 10.2: The most important bibliographic entry types.

\section*{References}
[1] Henry H. Albert, Free torsoids, Current trends in lattice theory, D. Van Nostrand, 1970.
[2] Henry H. Albert, Free torsoids, Current trends in lattice theory (G. H. Birnbaum, ed.), vol. 7, D. Van Nostrand, Princeton, January, 1970, no translation available, pp. 173-215 (German).
[3] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, 1990.
[4] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990, final revision not yet available.
[5] Grant H. Foster, Computational complexity in lattice theory, tech. report, Carnegie Mellon University, 1986.
[6] Grant H. Foster, Computational complexity in lattice theory, Research Note 128A, Carnegie Mellon University, Pittsburgh, PA, December, 1986, research article in preparation.
[7] Peter Konig, Composition of functions. Proceedings of the Conference on Universal Algebra (Kingston, 1969).
[8] Peter Konig, Composition of functions. Proceedings of the Conference on Universal Algebra (G. H. Birnbaum, ed.), vol. 7, Canadian Mathematical Society, Queen's Univ., Kingston, ON, available from the Montreal office, pp. 1-106 (English).
[9] William A. Landau, Representations of complete lattices, Abstract: Notices Amer. Math. Soc., 18, 937.
[10] William A. Landau, Representations of complete lattices, Abstract: Notices Amer. Math. Soc. 18, 937, December, 1975.
[11] George A. Menuhin, Universal algebra. D. van Nostrand, Princeton, 1968.
[12] George A. Menuhin, Universal algebra. Second ed., University Series in Higher Mathematics, vol. 58, D. van Nostrand, Princeton, March, 1968 (English), no Russian translation.
[13] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[14] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460 (English), Russian translation available.

Figure 10.3: Bibliography in the article document class.
\cite[pages~2--15] \{eM57\}
typesets as [13, pages 2-15].
If you wish to use labels rather than numbers to identify bibliographic items, then you can specify those labels with an optional argument of the \bibitem command:
[EM57] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
typed as
\bibitem[EM57] \{eM57\}
Ernest~T. Moynahan, \emph\{On a problem of M. Stone\}, Acta Math. Acad. Sci. Hungar. \textbf\{8\} (1957), 455--460.

If this optional argument of \bibitem is used, then the \cite command produces [EM57]. The argument of \begin\{thebibliography\} must be set wide enough to } allow for such labels.

\section*{Rule ■ Label for a bibliographic item}

A label cannot contain a comma or a space.

The examples I have used follow the formatting rules set by the AMS. Only titles are italicized, and only volume numbers of journals are set in boldface. You also have to watch the order in which the items are given, the punctuation, and the capitalization.

If an author appears repeatedly, use the \bysame command, which replaces the author's name with a long dash followed by a thin space. For example,
```

\bibitem{gF86}
Grant~H. Foster,
\emph{Computational complexity in lattice theory},
tech. report, Carnegie Mellon University, 1986.
\bibitem{gF86a}
\bysame,
\emph{Computational complexity in lattice theory},
Research Note 128A, Carnegie Mellon University,
Pittsburgh PA, December 1986,
research article in preparation.

```

See sampart.tex on page 293 for a typeset example.

Tip If you want a different title for your bibliography, say Bibliography, place the command
\renewcommand\{\refname\}\{Bibliography\}
anywhere before the thebibliography environment (see Section 15.1.6). If you use a legacy document class or amsbook.cls, use the line
\renewcommand\{\bibname\}\{Bibliography\}

Tip You may have more than one thebibliography environment in a document. Because each bibliography would number the entries from 1, you should provide labels as optional parameters of the \bibitem commands for cross-referencing.

\subsection*{10.5.2 Simple indexes}

Using the \label and \pageref commands (see Section 10.4.2), it is quite simple to produce a small index in a theindex environment. At each point in the text that you want to reference in the index, place a \label command. The corresponding entry in the index typesets the page number with the \pageref command.

The \item, \subitem, and \subsubitem commands create an entry, subentry, and subsubentry, respectively. If you need additional vertical spacing when the first letter changes, for instance, between the " \(h\) " entries and the " \(i\) " entries, you can use the \indexspace command. Here are some examples of index entries:
```

$$
\begin{theindex}
\item Lakser, H., \pageref{Lakser}
\item Lattice, \pageref{Lattice_intro},
    \textbf{\pageref{Lattice}}
    \subitem distributive, \pageref{Lattice_distributive}
    \subitem modular, \pageref{Lattice_distributive},
        \textbf{\pageref{Lattice_distributive2}}
\item Linear subspace, \pageref{Linear_subspace}
\end{theindex}
$$

```

And here is the typeset index:

\section*{Index}

Lakser, H., 2
Lattice, 14, 25
distributive, 18
modular, 19, 37
Linear subspace, 38
For a larger index, you should use the MakeIndex application (see Chapter 17).

\subsection*{10.6 Visual design}

In this chapter, we have discussed the logical design of a \({ }^{\mathrm{AT}} \mathrm{EX}\) document. The visual design is largely left to the document class. But there is one small aspect of the visual design we have to discuss, the page style.

To get a visual representation of the page style of your document, use layout package of Kent McPherson (see Section 12.3.1). Load the package with
```

\usepackage{layout}

```
and place the \layout command somewhere in the body of your article. \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) produces a graphical representation of the page layout. Figure 10.4 shows the page layout for odd pages for the amsart document class with no options.

A typeset page has three parts, the running head or header, the body, and the footer. As a rule, the document class takes care of the contents and formatting of all three parts.

For the running head and footer, however, you can override the page design of the document class with the command
```

\pagestyle{style}

```
where the argument style is one of the following:
plain The running head is empty and the footer contains only the page number
empty Both the running head and the footer are blank
headings The running head contains the information provided by the document class and the footer is empty
myheadings The running head contains the information provided by the commands \(\backslash\) markboth and \(\backslash\) markright, the footer is empty

The \markright command takes only one argument. The last \markright on a page provides the running head information for that page. The \markboth command has two arguments. The first provides the running head information for a left-hand page, the second provides the running head information for a right-hand page. The AMS

\begin{tabular}{|c|c|c|c|}
\hline 1 & one inch + \hoffset & 2 & one inch + \voffset \\
\hline 3 & \oddsidemargin \(=54 \mathrm{pt}\) & 4 & \topmargin \(=22 \mathrm{pt}\) \\
\hline 5 & \(\backslash\) headheight \(=8 \mathrm{pt}\) & 6 & \(\backslash\) headsep \(=14 \mathrm{pt}\) \\
\hline 7 & \textheight \(=584 \mathrm{pt}\) & 8 & \textwidth \(=360 \mathrm{pt}\) \\
\hline 9 & \(\backslash\) marginparsep \(=11 \mathrm{pt}\) & 10 & \(\backslash\) marginparwidth \(=90 \mathrm{pt}\) \\
\hline 11 & \(\backslash\) footskip \(=12 \mathrm{pt}\) & & \(\backslash\) marginparpush \(=5 \mathrm{pt}\) (not shown) \\
\hline & \hoffset = 0pt & & \(\backslash \mathrm{voffset}=0 \mathrm{pt}\) \\
\hline & \(\backslash\) paperwidth \(=614 \mathrm{pt}\) & & \(\backslash\) paperheight \(=794 \mathrm{pt}\) \\
\hline
\end{tabular}

Figure 10.4: Page layout for the amsart document class.
document classes also have a \markleft command for the running head information for a right-hand page.

The \thispagestyle command is the same as \pagestyle except that it affects only the current page.

For instance, if the current page is a full-page graphic, you might want to issue the command
\thispagestyle\{empty\}
The \(\backslash\) maketitle command automatically issues a
\thispagestyle\{plain\}
command, so if you want to suppress the page number on the first page of a document, you have to put
\thispagestyle\{empty\}
immediately after the \maketitle command.
The commands listed in Figure 10.4 are length commands (see Section 15.5.2) and can be changed with the commands introduced in that section. As a rule, you do not have to worry about these settings, they are chosen by the document class for you. Sometimes, however, you have a job that requires such changes. I once had to submit a research plan on a form with a 7.5 inch by 5 inch box. To be able to cut and paste the typeset report, I had to produce the text with a \textwidth of 7 inches. If I simply set
\setlength\{\textwidth\}\{7in\}
the text would overflow the printed page and the last few characters of each line would be missing. So I had to change the margins by starting the document with
```

\documentclass[12pt]{report}
\setlength{\textwidth}{7in}
\setlength{\oddsidemargin}{0pt}

```

All of Chapter 4 of The \({ }^{A} T_{E} X\) Companion, 2nd edition [46] deals with page layouts. There you can find a description of the geometry package of Hideo Umeki, which computes all the parameters from the ones you supply. Also you find there a discussion of Piet van Oostrum's excellent package, fancyhdr, which allows you to create your own page style (see also [24]). See Section E. 1 on how to get these packages.

However, if you submit an article to a journal, do not change the type size, page dimensions, headers. Use the document class and the article templates the journal provides (if any). This will make your submission easier for you and the journal.

\section*{The AMS article document class}

In this chapter, we discuss amsart, the main AMS document class for journal articles. The AMS book document class is discussed in Chapter 18.

In Section 11.1, I argue that there are good reasons why you should write your articles for publication in amsart. Section 11.2 introduces the rules governing the top matter in the amsart document class. Section 11.3 contains a detailed sample article. We present the source file and the typeset version juxtaposed. In Section 4.2, you created a simple template for amsart articles. In Section 11.4, you are guided through the process for creating more detailed templates.

A document class is shaped by its options. In Section 11.5, we discuss the options of amsart. Section 11.6 briefly describes the various packages in the AMS distribution and their interdependencies.

\subsection*{11.1 Why amsart?}

\subsection*{11.1.1 Submitting an article to the AMS}

You want to submit an article written with the amsart document class to the Proceedings of the American Mathematical Society.

For general information on the AMS journals, go to the AMS Web site
```

http://www.ams.org/

```
and start discovering the wealth of relevant information in the column Publications \& Tools, especially in the Author Resource Center.

Then click on the journal from the list, and on the Proceedings page, click on Author packages. The page that comes up has everything you need, in particular, the proc-l.cls, the document class for the Proceedings. Click on it to download the document class. Place it in the folder with your article.

There is a more direct way to find proc-l.cls, and this will always work even when the AMS changes the layout of its Web site. At the AMS Web site click on Search. In the search field, type proc-l.cls. Do the search and click on the link to proc-l.cls.

Now, in the preamble of your article, replace the line
\documentclass\{amsart\}
with
\documentclass\{proc-l\}
Typeset the article and you are done. Your article is formatted as it will appear in the Proceedings.

\subsection*{11.1.2 Submitting an article to Algebra Universalis}

There are many journals whose document class is based on amsart. For instance,
```

http://www.math.umanitoba.ca/homepages/au/

```
takes you to the home page of the journal Algebra Universalis. To find the document class, click on Instructions for authors and then click where indicated to get au.cls. Now in your article make the replacement
\documentclass\{au\}
and your article typesets in the format appropriate for this journal.

\subsection*{11.1.3 Submitting to other journals}

A large number of journals use document classes based on amsart. Not all are as friendly as Algebra Universalis, but as a rule a small number of changes in the article suffice.

All of them share the attribute that the top matter is given as the arguments of many commands. In the introductory sample article, intrart.tex, on page 37, there were only four, but in the sample article sampart.tex, on page 290, there are nine-there
could be many more. Contrast this with the legacy article class (see Section 12.1.1). As a result, the document class is able to shape the top matter as the journal requires. Even if the names of some of these commands are different (e.g., affiliation instead of address), the principles you learn from the amsart document class apply.

Many journals insist that you use their own document classes. For these, you may have to add the AMS packages (see Section 11.6) to continue to use the enhancements of the AMS.

A shrinking number of journals use document classes incompatible with the AMS packages. If you can, avoid these journals.

\subsection*{11.1.4 Submitting to conference proceedings}

The AMS also has a document class for articles for book-form proceedings of meetings. The differences in the rules for the amsart and amsproc document classes are so minor that you can safely ignore them.

\subsection*{11.2 The top matter}

For a fairly representative example, see the typeset top matter of the sampart.tex article on pages 286 and 288. As you may recall from Section 4.1, part of the author information is moved to the end of the typeset article-see page 288.

Title page information is provided as arguments of several commands. For your convenience, I divide them into three groups: information about the article, information about the author, and AMS related information.

There is only one general rule.

\section*{Rule ■ Top matter commands}

All top matter commands are short.

This means that there can be no blank lines (or \par commands) in the argument of any of these commands (see Section 5.3.3).

\subsection*{11.2.1 Article information}

You have to supply five pieces of information about the article.

\section*{Rule ■ Title}
- Command: \title
- Separate lines with \(\backslash \backslash\)
- Optional argument: Short title for running head
- Do not put a period at the end of a title
- Do not use user-defined commands in the title

The typeset title is placed on the front page of the typeset article.
Many titles are too long to be typeset on a single line in the font used by the amsart document class for titles. If the way \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) breaks the title is not satisfactory, you can indicate where the title should be broken with the \(\backslash \backslash\) command. Alternatively, you may nudge \(\mathrm{ET}_{\mathrm{E}} \mathrm{X}\) in the right direction with ~ (see Section 5.4.3). For instance, the title:

The \texttt\{amsart\} document class
is broken by \(\mathrm{LATEX}_{\mathrm{E}}\) between document and class. So either add \(\backslash \backslash\) :
The \texttt\{amsart\}\\ document class
or replace document class with document \({ }^{\sim}\) class:
The \texttt\{amsart\} document~class
The running head (see Section 10.6) is the title on odd-numbered pages, set in capital letters. If the title is more than a few words long, use an optional argument to specify a short title for the running head. Do not use \(\backslash \backslash\) in the short title.

Example of a title:
\title\{A construction of distributive lattices\}
A title with a short title:
```

\title[Complete-simple distributive lattices]

{A construction of<br> complete-simple
distributive lattices}

```

Note the AMS rules about short titles and the table of contents on Section 18.2.1.

\section*{Rule ■ Translator}
- Command: \translator
- Do not put a period at the end of the argument.

The typeset \(\backslash\) translator is placed on the last page of the typeset article, before the address(es). There can be more than one translator. Each should be given as the argument of a separate \translator command.

Example:
\translator\{Harry~M. Goldstein\}

\section*{Rule ■ Dedication}
- Command: \dedicatory
- Separate lines with \(\backslash \backslash\)

The typeset dedication is placed under the author(s).
Example:
\dedicatory\{To the memory of my esteemed friend and teacher,\\ Harry~M. Goldstein\}

Rule ■ Date
- Command: \date

The typeset \date is placed on the front page of the typeset article as a footnote.
Examples:
\date\{January 22, 2006\}
You can use the \today command to get today's date:
\date\{\today\}
Do not use this when you submit an article; specify the submission date.
To suppress the date, use \date\{\} or omit the \date command entirely.

\subsection*{11.2.2 Author information}

There are seven pieces of information about yourself.

\section*{Rule ■ Author}
- Command: \author
- Optional argument: Short form of the name for the running head

The typeset author is placed on the front page of the typeset article.
Examples:
An author:
\author\{George~A. Menuhin\}
An author with a short form of the name for the running head:
\author[G.\\,A. Menuhin] \{George~A. Menuhin\}
Section 11.2.4 discusses how to specify multiple authors.

\section*{Rule ■ Contributor}
- Command: \contrib
- Optional argument: Describing the contribution

The typeset contributor's name is placed on the front page of the typeset article. This command is very recent. It was introduced in amsart version 2.20.

\section*{Examples:}

A contributor authoring an appendix:
\contrib[with an appendix by]\{John Blaise\}
If this appendix has two authors:
\contrib[with an appendix by]\{J. Blaise\}
\contrib[]\{W. Blaise\}
This typesets (with author G. A. Menuhin) the author line as

Contributors can have addresses, current addresses, etc., just like authors.

\section*{Rule ■ Address}
- Command: \address
- Separate lines with \(\backslash \backslash\)
- Optional argument: Name of author

The typeset address is placed at the end of the typeset article.
Example:

\section*{\(\Gamma\)}

Department of Applied Mathematics, University of Winnebago, Winnebago, Mn 53714
which is typed as
```

\address{Department of Applied Mathematics<br>
University of Winnebago<br>
Winnebago, MN 53714}

```

Notice that \({ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) replaces the \(\backslash \backslash\) line separators with commas.
If there are several authors, you can use the author's name as an optional argument of \address to avoid ambiguity. See Example 4 in Section 11.2 .5 (page 283) for a complete example.

\section*{Rule ■ Current address}
- Command: \curraddr
- Separate lines with \\
- Optional argument: name of author

The typeset current address is placed at the end of the typeset article.
Example:
\(\Gamma\)
Current address: Department of Mathematics, University of York, Heslington, York, England
L
is typed as
\curraddr\{Department of Mathematics\\
University of York\\
Heslington, York, England\}

If there are several authors, you can use the author's name as an optional argument of \curraddr to avoid ambiguity; for some examples, see Section 11.2.5.

\section*{Rule ■ E-mail address}
- Command: \email
- Optional argument: Name of author

The typeset e-mail address is placed at the end of the typeset article.
Example:
\email\{gmen@ccw.uwinnebago.edu\}

Tip Some e-mail addresses contain the special underscore character (_). Recall (see Section 5.4.4) that you have to type \(\backslash_{-}\)to get _.

Example:
\email\{George_Gratzer@umanitoba.ca\}

Tip Some older e-mail addresses contain the percent symbol (\%); recall that you have to type \(\backslash \%\) to get \% (see Section 5.4.4).

\section*{Example:}
\email\{h1175moy\\%ella@relay.eu.net\}

\section*{Rule ■ Web (home) page (URL)}
- Command: \urladdr
- Optional argument: Name of author

The typeset Web (home) page is placed at the end of the typeset article.
Example:
\urladdr\{http://www.maths.umanitoba.ca/homepages/gratzer/\}

Tip Many Internet addresses contain the tilde (\({ }^{\sim}\)), indicating the home directory of the user. Type \(\sim\) to get \(\sim\) and not \(\backslash \sim\), as recommended in Section 5.4.4. \(\$ \backslash \operatorname{sim} \$\) is also unacceptable.

\section*{Example:}
\urladdr\{http://kahuna.math.hawaii.edu/~ralph/\}

\section*{Rule ■ Research support or other acknowledgments}
- Command: \thanks
- Do not specify linebreaks.
- Terminate the sentence with a period.

The typeset research support or other acknowledgments is placed on the front page of the typeset article as an unmarked footnote.
Example:
\thanks\{Supported in part by NSF grant PAL-90-2466.\}
A \(\backslash\) thanks \(\}\) command is ignored in typesetting.

\subsection*{11.2.3 AMS information}

The AMS requires that you supply two more pieces of information about the article.
The following are collected at the bottom of the first page as unmarked footnotes along with the arguments of the \(\backslash\) thanks and \(\backslash\) date commands.

\section*{Rule ■ AMS subject classifications}
- Command: \subjclass
- Optional argument: 2000-the default is 1991.
- amsart supplies the phrase 1991 Mathematics Subject Classification and a period at the end of the subject classification-with the optional argument 2000, the phrase is 2000 Mathematics Subject Classification
- The argument should be either a five-character code or the phrase Primary: followed by a five-character code, a semicolon, the phrase Secondary: and one or more additional five-character codes.

The typeset AMS subject classifications is placed at the bottom of the front page of the typeset article as a footnote.
Examples:
\subjclass [2000] \{06B10\}
\subjclass[2000]\{Primary: 06B10; Secondary: 06D05\}
The current subject classification scheme for mathematics was adopted in 2000, making the 1991 classification scheme obsolete. Thus, 2000 should be considered as a compulsory optional argument - maybe the only one in all of ITEX.

The current subject classification scheme, MSC 2000, is available from the AMS Web site
http://www.ams.org/
Search for MSC. Or in the Author Resource Center click on MSC.

\section*{Rule ■ Keywords}
- Command: \keywords
- Do not indicate line breaks.
- amsart supplies the phrase Key words and phrases. and a period at the end of the list of keywords.

The typeset keywords are placed on the front page of the typeset article as a footnote.

\section*{Example:}
\keywords\{Complete lattice, distributive lattice, complete congruence, congruence lattice\}

Keywords are optional for many journals.

Further footnotes An additional \thanks command creates an unmarked footnote. Examples:
```

\thanks{This is a preliminary version of this article,
prepared for the Second Annual Meeting of the
Statistical Association of Winnebago.}
\thanks{This article is in final form, and no version
of it will be submitted elsewhere.}

```

\subsection*{11.2.4 Multiple authors}

If an article has several authors, repeat the author information commands for each one. Take care that the e-mail address follows the address.

If two authors share the same address, omit the \address command for the second author, who can still have a different e-mail address and Web home page. An additional \thanks command for the first author should precede any \thanks commands for the second author. Since the footnotes are not marked, the argument of the \thanks command for research support should contain a reference to the author:
```

\thanks{The research of the first author was supported
in part by NSF grant PAL-90-2466.}
\thanks{The research of the second author was supported by
the Hungarian National Foundation for Scientific
Research, under Grant No.~9901.}

```

Finally, if an article has more than two authors, supply the author information for each author as usual, but explicitly specify the running heads with the \markleft command:
\markleft\{first author ET AL.\}
where first author must be all capitals.
If there are multiple authors, sometimes it may not be clear whose address, current address, e-mail address, or Web home page is being given. In such cases you can give the name of the author as an optional argument for these commands. For example,

Email address, Ernest T. Moynahan: emoy@ccw.uwinnebago.edu.
is typed as
```

\email[Ernest~T. Moynahan]{emoy@ccw.uwinnebago.edu}

```

See also Example 4 in Section 11.2.5.

\subsection*{11.2.5 Examples}

The following examples show typical top matter commands and can be found in the topmat.tpl file in the samples folder (see page 4).

Example 1 One author.
```

% Article information

\title[Complete-simple distributive lattices]

    {A construction of complete-simple\\
        distributive lattices}
    \date{\today}
% Author information
George~A. Menuhin
\address{Computer Science Department<br>
University of Winnebago<br>
Winnebago, MN 53714}

\email{gmen@ccw.uwinnebago.edu}
\urladdr{http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{This research was supported by
the NSF under grant number 23466.}
% AMS information
\keywords{Complete lattice, distributive lattice,
complete congruence, congruence lattice}
\subjclass[2000]{Primary: 06B10; Secondary: 06D05}

```

In the \title command, supplying the optional argument for the running head is the rule, not the exception. The only required item is \title. If it is missing, you get the strange error message:
! Undefined control sequence.
<argument> \shorttitle
1.49 \maketitle

Example 2 Two authors but only the first has a Web home page. I only show the author information section here. The other commands are the same as in Example 1.
```

% Author information
George~A. Menuhin
\address{Computer Science Department<br>
University of Winnebago<br>
Winnebago, MN 53714}

```
```

\email{gmen@ccw.uwinnebago.edu}
\urladdr{http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{The research of the first author was
supported by the NSF under grant number 23466.}
Ernest~T. Moynahan
\address{Mathematical Research Institute
of the Hungarian Academy of Sciences<br>
Budapest, P.O.B. 127, H-1364<br>
Hungary}

\email{h1175moy\%ella@relay.eu.net}
\thanks{The research of the second author
was supported by the Hungarian
National Foundation for Scientific Research,
under Grant No. 9901.}

```

Example 3 Two authors, same department. I only show the author information section here. The other commands are identical to those in Example 1.
\% Author information
\author\{George~A. Menuhin\}
\address\{Computer Science Department\\
University of Winnebago\\ Winnebago, MN 53714\}
\email[George~A. Menuhin] \{gmen@ccw.uwinnebago.edu\}
\urladdr[George~A. Menuhin]\% \{http://math.uwinnebago.edu/homepages/menuhin/\}
\thanks\{The research of the first author was supported by the NSF under grant number \(\left.{ }^{\sim} 23466.\right\}\)
\author\{Ernest \(\sim\) T. Moynahan\}
\email[Ernest~T. Moynahan] \{emoy@ccw.uwinnebago.edu\}
\thanks\{The research of the second author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. 9901.\}

Note that the second author has no \address.
Example 4 Three authors, the first two from the same department, the second and third with e-mail addresses and research support. I only show the author information section. The other commands are unchanged. There are various ways of handling this situation. This example shows one solution.
```

% Author information
George ~A. Menuhin

```
```

\address[George~A. Menuhin and Ernest~T. Moynahan]
{Computer Science Department<br>
University of Winnebago<br>
Winnebago, MN 53714}
\email[George~A. Menuhin] {gmen@ccw.uwinnebago.edu}
\urladdr[George~A. Menuhin]%
{http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{The research of the first author was
supported by the NSF under grant number 23466.}
Ernest~T. Moynahan
\email[Ernest~T. Moynahan] {emoy@ccw.uwinnebago.edu}

\thanks{The research of the second author was supported
by the Hungarian National Foundation for
Scientific Research, under Grant No. 9901.}
Ferenc~R. Richardson
\address[Ferenc ~R. Richardson]
{Department of Mathematics<br>
California United Colleges<br>
Frasco, CA 23714}

\email[Ferenc~R. Richardson]{frich@ccu.frasco.edu}
\thanks{The research of the third author was
supported by the NSF under grant number 23466.}

```

Tip The most common mistake in the top matter is the misspelling of a command name; for instance, \adress. \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) sends the error message
! Undefined control sequence. 1.37 \adress
\{Computer Science Department\\\}
which tells you exactly what you mistyped. Similarly, if you drop a closing brace, as in
\email\{menuhin@ccw.uwinnebago.edu
you are told clearly what went wrong. Because the top matter commands are short (see Section 5.3.3), \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) gives the error message

Runaway argument?
\{menuhin@ccw.uwinnebago.edu \thanks
\{The research of th \(\backslash\) ETC.
!File ended while scanning use of \\email.
If you drop an opening brace,
```

\author George~A. Menuhin}

```
you get the error message
! Too many \}'s.
1.43 \author George~A. Menuhin\}

If you enclose an optional argument in braces instead of brackets,
```


# Complete-simple distributive lattices

%    {A construction of complete-simple\\
    distributive lattices}
    ```
\({ }^{\mathrm{LA}} \mathrm{EX}\) uses the short title as the title and the real title is typeset before the title of the typeset article.

\subsection*{11.2.6 Abstract}

As we discussed in Section 10.3.1, you type the abstract in an abstract environment, which you place as the last item before the \maketitle command. The abstract should be self-contained, so do not include cross-references and do not cite from the bibliography. Avoid user-defined commands.

If you place the abstract after the \(\backslash\) maketitle command, ETTEX typesets it wherever it happens to be and sends a warning.

\subsection*{11.3 The sample article}
sampart.tex is the source file for our more advanced sample article using amsart (in the samples folder, see page 4). A simpler article using amsart is presented in Part I (see Section 4.1).

The typeset sampart.tex is shown on the following three pages.

\title{
A CONSTRUCTION OF COMPLETE-SIMPLE DISTRIBUTIVE LATTICES
}

\author{
GEORGE A. MENUHIN
}

\begin{abstract}
In this note we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices in which there are only two complete congruences.
\end{abstract}

\section*{1. Introduction}

In this note we prove the following result:
Main Theorem. There exists an infinite complete distributive lattice \(K\) with only the two trivial complete congruence relations.

\section*{2. The \(D^{\langle 2\rangle}\) construction}

For the basic notation in lattice theory and universal algebra, see Ferenc R. Richardson [5] and George A. Menuhin [2]. We start with some definitions:
Definition 1. Let \(V\) be a complete lattice, and let \(\mathfrak{p}=[u, v]\) be an interval of \(V\). Then \(\mathfrak{p}\) is called complete-prime if the following three conditions are satisfied:
(1) \(u\) is meet-irreducible but \(u\) is not completely meet-irreducible;
(2) \(v\) is join-irreducible but \(v\) is not completely join-irreducible;
(3) \([u, v]\) is a complete-simple lattice.

Now we prove the following result:
Lemma 1. Let \(D\) be a complete distributive lattice satisfying conditions (1) and (2). Then \(D^{\langle 2\rangle}\) is a sublattice of \(D^{2}\); hence \(D^{\langle 2\rangle}\) is a lattice, and \(D^{\langle 2\rangle}\) is a complete distributive lattice satisfying conditions (1) and (2).
Proof. By conditions (1) and (2), \(D^{\langle 2\rangle}\) is a sublattice of \(D^{2}\). Hence, \(D^{\langle 2\rangle}\) is a lattice.
Since \(D^{\langle 2\rangle}\) is a sublattice of a distributive lattice, \(D^{\langle 2\rangle}\) is a distributive lattice. Using the characterization of standard ideals in Ernest T. Moynahan [3], \(D^{\langle 2\rangle}\) has a zero and a unit element, namely, \(\langle 0,0\rangle\) and \(\langle 1,1\rangle\). To show that \(D^{\langle 2\rangle}\) is complete, let \(\varnothing \neq A \subseteq D^{\langle 2\rangle}\), and let \(a=\bigvee A\) in \(D^{2}\). If \(a \in D^{\langle 2\rangle}\), then \(a=\bigvee A\) in \(D^{\langle 2\rangle}\); otherwise, \(a\) is of the form \(\langle b, 1\rangle\) for some \(b \in D\) with \(b<1\). Now \(\bigvee A=\langle 1,1\rangle\) in \(D^{2}\) and the dual argument shows that \(\bigwedge A\) also exists in \(D^{2}\). Hence \(D\) is complete. Conditions (1) and (2) are obvious for \(D^{\langle 2\rangle}\).

Corollary 1. If \(D\) is complete-prime, then so is \(D^{\langle 2\rangle}\).

\footnotetext{
Date: March 15, 2006.
2000 Mathematics Subject Classification. Primary: 06B10; Secondary: 06D05.
Key words and phrases. Complete lattice, distributive lattice, complete congruence, congruence lattice.

Research supported by the NSF under grant number 23466.
}

The motivation for the following result comes from Soo-Key Foo [1].
Lemma 2. Let \(\Theta\) be a complete congruence relation of \(D^{\langle 2\rangle}\) such that
\[
\begin{equation*}
\langle 1, d\rangle \equiv\langle 1,1\rangle \quad(\bmod \Theta), \tag{2.1}
\end{equation*}
\]
for some \(d \in D\) with \(d<1\). Then \(\Theta=\iota\).
Proof. Let \(\Theta\) be a complete congruence relation of \(D^{\langle 2\rangle}\) satisfying (2.1). Then \(\Theta=\iota\).

\section*{3. The \(\Pi^{*}\) construction}

The following construction is crucial to our proof of the Main Theorem:
Definition 2. Let \(D_{i}\), for \(i \in I\), be complete distributive lattices satisfying condition (2). Their \(\Pi^{*}\) product is defined as follows:
\[
\Pi^{*}\left(D_{i} \mid i \in I\right)=\Pi\left(D_{i}^{-} \mid i \in I\right)+1 ;
\]
that is, \(\Pi^{*}\left(D_{i} \mid i \in I\right)\) is \(\Pi\left(D_{i}^{-} \mid i \in I\right)\) with a new unit element.
Notation. If \(i \in I\) and \(d \in D_{i}^{-}\), then
\[
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle
\]
is the element of \(\Pi^{*}\left(D_{i} \mid i \in I\right)\) whose \(i\)-th component is \(d\) and all the other components are 0 .

See also Ernest T. Moynahan [4]. Next we verify:
Theorem 1. Let \(D_{i}\), for \(i \in I\), be complete distributive lattices satisfying condition (2). Let \(\Theta\) be a complete congruence relation on \(\Pi^{*}\left(D_{i} \mid i \in I\right)\). If there exist \(i \in I\) and \(d \in D_{i}\) with \(d<1_{i}\) such that for all \(d \leq c<1_{i}\),
\[
\begin{equation*}
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \equiv\langle\ldots, 0, \ldots, \stackrel{i}{c}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta), \tag{3.1}
\end{equation*}
\]
then \(\Theta=\iota\).
Proof. Since
\[
\begin{equation*}
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \equiv\langle\ldots, 0, \ldots, \stackrel{i}{c}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta), \tag{3.2}
\end{equation*}
\]
and \(\Theta\) is a complete congruence relation, it follows from condition (3) that
\[
\begin{align*}
& \langle\ldots, d, \ldots, 0, \ldots\rangle \tag{3.3}\\
& \equiv \bigvee(\langle\ldots, 0, \ldots, c, \ldots, 0, \ldots\rangle \mid d \leq c<1) \equiv 1 \quad(\bmod \Theta) .
\end{align*}
\]

Let \(j \in I\) for \(j \neq i\), and let \(a \in D_{j}^{-}\). Meeting both sides of the congruence (3.2) with \(\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle\), we obtain
\[
\begin{align*}
0 & =\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \wedge\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle \\
& \equiv\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle \quad(\bmod \Theta) . \tag{3.4}
\end{align*}
\]

Using the completeness of \(\Theta\) and (3.4), we get:
\[
0 \equiv \bigvee\left(\langle\ldots, 0, \ldots, \stackrel{j}{a}, \ldots, 0, \ldots\rangle \mid a \in D_{j}^{-}\right)=1 \quad(\bmod \Theta)
\]
hence \(\Theta=\iota\).

Theorem 2. Let \(D_{i}\) for \(i \in I\) be complete distributive lattices satisfying conditions (2) and (3). Then \(\Pi^{*}\left(D_{i} \mid i \in I\right)\) also satisfies conditions (2) and (3).

Proof. Let \(\Theta\) be a complete congruence on \(\Pi^{*}\left(D_{i} \mid i \in I\right)\). Let \(i \in I\). Define
\[
\widehat{D}_{i}=\left\{\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle \mid d \in D_{i}^{-}\right\} \cup\{1\}
\]

Then \(\widehat{D}_{i}\) is a complete sublattice of \(\Pi^{*}\left(D_{i} \mid i \in I\right)\), and \(\widehat{D}_{i}\) is isomorphic to \(D_{i}\). Let \(\Theta_{i}\) be the restriction of \(\Theta\) to \(\widehat{D}_{i}\).

Since \(D_{i}\) is complete-simple, so is \(\widehat{D}_{i}\), and hence \(\Theta_{i}\) is \(\omega\) or \(\iota\). If \(\Theta_{i}=\rho\) for all \(i \in I\), then \(\Theta=\omega\). If there is an \(i \in I\), such that \(\Theta_{i}=\iota\), then \(0 \equiv 1(\bmod \Theta)\), hence \(\Theta=\iota\).

The Main Theorem follows easily from Theorems 1 and 2.

\section*{References}
[1] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December, 1990.
[2] George A. Menuhin, Universal algebra. D. Van Nostrand, Princeton, 1968.
[3] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[4] , Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1957), 417-434 (Hungarian).
[5] Ferenc R. Richardson, General lattice theory. Mir, Moscow, expanded and revised ed., 1982 (Russian).

Computer Science Department, University of Winnebago, Winnebago, MN 53714
E-mail address: menuhin@ccw.uwinnebago.edu
URL: http://math.uwinnebago.edu/homepages/menuhin/

The next two pages show the first page of the source file facing a fragment of the first page of the typeset article. It displays the part of this first typeset page that comes from the facing source file.

On the two pages after the facing first pages, some parts of the source file and the typeset version are shown juxtaposed, so that you can see how the marked-up source file becomes the typeset article.
```

% Sample file: sampart.tex
% The sample article for the amsart document class
s{amsart}\usepackage{amssymb,latexsym}\numberwithin{equation}{section}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

\begin{document}

\title[Complete-simple distributive lattices]

    {A construction of complete-simple\\
    distributive lattices}
    George~A. Menuhin
\address{Computer Science Department<br>
University of Winnebago<br>
Winnebago, MN 53714}

\email{menuhin@ccw.uwinnebago.edu}
\urladdr{http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{Research supported by the NSF under grant number
23466.}
\keywords{Complete lattice, distributive lattice,
complete congruence, congruence lattice}
\subjclass [2000] {Primary: 06B10; Secondary: 06D05}
\date{March 15, 2006}


#### Abstract

In this note we prove that there exist \emph{complete-simple distributive lattices,} that is, complete distributive lattices in which there are only two complete congruences.


## 2. Introduction

In this note we prove the following result:
$$
\begin{main}
    There exists an infinite complete distributive lattice~$K$ with only
    the two trivial complete congruence relations.
\end{main}
$$

\section\{The \$D^\{\langle 2 \rangle\}\$ construction\}\label\{S:Ds\}

For the basic notation in lattice theory and universal algebra, see Ferenc ${ }^{\sim}$ R. Richardson~\cite\{fR82\} and George~A. Menuhin~\cite\{gM68\}. We start with some definitions:

```

\title{
A CONSTRUCTION OF COMPLETE-SIMPLE DISTRIBUTIVE LATTICES
}

\author{
GEORGE A. MENUHIN
}

\begin{abstract}
In this note we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices in which there are only two complete congruences.
\end{abstract}

\section*{1. Introduction}

In this note we prove the following result:
Main Theorem. There exists an infinite complete distributive lattice \(K\) with only the two trivial complete congruence relations.
2. The \(D^{\langle 2\rangle}\) construction

For the basic notation in lattice theory and universal algebra, see Ferenc R. Richardson [5] and George A. Menuhin [2]. We start with some definitions:

\footnotetext{
Date: March 15, 2006.
2000 Mathematics Subject Classification. Primary: 06B10; Secondary: 06D05.
Key words and phrases. Complete lattice, distributive lattice, complete congruence, congruence lattice.

Research supported by the NSF under grant number 23466.
}

Since \(D^{\langle 2\rangle}\) is a sublattice of a distributive lattice, \(D^{\langle 2\rangle}\) is a distributive lattice. Using the characterization of standard ideals in Ernest T. Moynahan [3], \(D^{\langle 2\rangle}\) has a zero and a unit element, namely, \(\langle 0,0\rangle\) and \(\langle 1,1\rangle\). To show that \(D^{\langle 2\rangle}\) is complete, let \(\varnothing \neq A \subseteq D^{\langle 2\rangle}\), and let \(a=\bigvee A\) in \(D^{2}\). If \(a \in D^{\langle 2\rangle}\), then \(a=\bigvee A\) in \(D^{\langle 2\rangle}\); otherwise, \(a\) is of the form \(\langle b, 1\rangle\) for some \(b \in D\) with \(b<1\). Now \(\bigvee A=\langle 1,1\rangle\) in \(D^{2}\) and the dual argument shows that \(\bigwedge A\) also exists in \(D^{2}\). Hence \(D\) is complete. Conditions (1) and (2) are obvious for \(D^{\langle 2\rangle}\).

Corollary 1. If \(D\) is complete-prime, then so is \(D^{\langle 2\rangle}\).
The motivation for the following result comes from Soo-Key Foo [1].
Lemma 2. Let \(\Theta\) be a complete congruence relation of \(D^{\langle 2\rangle}\) such that
\[
\begin{equation*}
\langle 1, d\rangle \equiv\langle 1,1\rangle \quad(\bmod \Theta) \tag{2.1}
\end{equation*}
\]
for some \(d \in D\) with \(d<1\). Then \(\Theta=\iota\).
```

    Since $D^{\langle 2 \rangle}$ is a sublattice of a distributive
    lattice, $D^{\langle 2 \rangle}$ is a distributive lattice. Using
    the characterization of standard ideals in Ernest~T. Moynahan~\cite{eM57},
    $D^{\langle 2 \rangle}$ has a zero and a unit element,
    namely, $\langle 0, 0 \rangle$ and $\langle 1, 1 \rangle$.
    To show that $D^{\langle 2 \rangle}$ is complete, let
    $\varnothing \ne A \subseteq D^{\langle 2 \rangle}$, and let
    $a = \bigvee A$ in $D^{2}$. If
    $a \in D^{\langle 2 \rangle}$, then
    $a = \bigvee A$ in $D`{\langle 2 \rangle}$; otherwise, $a$
    is of the form $\langle b, 1 \rangle$ for some
    $b \in D$ with $b < 1$. Now $\bigvee A = \langle 1, 1\rangle$
    in $D`{2}$ and the dual argument shows that $\bigwedge A$ also
    exists in $D^{2}$. Hence $D$ is complete. Conditions \eqref{m-i}
    and~\eqref{j-i} are obvious for $D^{\langle 2 \rangle}$.
    \end{proof}
$$
\begin{corollary}\label{C:prime}
    If $D$ is complete-prime, then so is $D^{\langle 2 \rangle}$.
\end{corollary}
$$
The motivation for the following result comes from Soo-Key Foo~\cite\{sF90\}.
\begin\{lemma\} \label\{L:ccr\} }
Let $\Theta$ be a complete congruence relation of
$D`{\langle 2 \rangle}$ such that

$$
\begin{equation}\label{E:rigid}
            \langle 1, d \rangle \equiv \langle 1, 1 \rangle \pmod{\Theta},
    \end{equation}
$$

    for some $d \in D$ with $d < 1$. Then $\Theta = \iota$.
    \end{lemma}

```

Since \(D_{i}\) is complete-simple, so is \(\widehat{D}_{i}\), and hence \(\Theta_{i}\) is \(\omega\) or \(\iota\). If \(\Theta_{i}=\rho\) for all \(i \in I\), then \(\Theta=\omega\). If there is an \(i \in I\), such that \(\Theta_{i}=\iota\), then \(0 \equiv 1(\bmod \Theta)\), hence \(\Theta=\iota\).

The Main Theorem follows easily from Theorems 1 and 2.

\section*{References}
[1] Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December, 1990.
[2] George A. Menuhin, Universal algebra. D. Van Nostrand, Princeton, 1968.
[3] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[4] , Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1957), 417-434 (Hungarian).
[5] Ferenc R. Richardson, General lattice theory. Mir, Moscow, expanded and revised ed., 1982 (Russian).

Computer Science Department, University of Winnebago, Winnebago, MN 53714
E-mail address: menuhin@ccw.uwinnebago.edu
URL: http://math.uwinnebago.edu/homepages/menuhin/
```

    Since $D_{i}\) is complete-simple, so is $\widehat{D}_{i}$, and
    hence $\Theta_{i}$ is $\omega$ or $\iota$. If
    $\Theta_{i} = \rho$ for all $i \in I$, then
    $\Theta = \omega$. If there is an $i \in I$, such that
    $\Theta_{i} = \iota$, then $0 \equiv 1 \pmod{\Theta}$, hence
    $\Theta = \iota$.
    \end{proof}
The Main Theorem follows easily from Theorems [T:P*](#T:P*) and~[T:P*a](#T:P*a).
$$
\begin{thebibliography}{9}
    \bibitem{sF90}
        Soo-Key Foo, \emph{Lattice Constructions}, Ph.D. thesis, University
        of Winnebago, Winnebago, MN, December, 1990.
    \bibitem{gM68}
    George~A. Menuhin, \emph{Universal algebra}. D. ~Van Nostrand,
    Princeton, 1968.
    \bibitem{eM57}
    Ernest~T. Moynahan, \emph{On a problem of M. Stone}, Acta Math.
            Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
\bibitem{eM57a}
    \bysame, \emph{Ideals and congruence relations in lattices}. II,
    Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9} (1957),
    417--434 (Hungarian).
\bibitem{fR82}
    Ferenc }\mp@subsup{}{}{~}\mathrm{ R. Richardson, \emph{General lattice theory}. Mir, Moscow,
    expanded and revised ed., 1982 (Russian).
\end{thebibliography}
$$
\end{document}

```

\subsection*{11.4 Article templates}

In this section, we create a template you can use for your amsart articles. A template is a read-only file. Open it with a text editor and save it under a different name. You can then start to write your new article using the new file, without having to remember the details governing the preamble and the top matter.

Create the template, which contains a customized preamble and top matter with sample bibliographic items, in several steps.

Step 1 In your text editor, open the amsart.tpl document from the samples folder (see page 4) and save it in your work subfolder as myams.tpl. Alternatively, type in the lines as shown in this section.

The first few lines of the file are
```

% Sample file: amsart.tpl
% Preamble
entclass{amsart}\usepackage{amssymb,latexsym}undefinedundefinedundefinedundefinedundefinedundefinedundefined

```

Notice the use of commented out lines (lines that start with \%) that have been added as comments about the file.

Edit line 1 to read
```

% Template file: myams.tpl

```

The lines
\documentclass\{amsart\}
\usepackage\{amssymb,latexsym\}
specify the amsart document class and the use of the amssymb and latexsym packages to gain access by name to all the symbols listed in Appendix B.

Step 2 After the \usepackage command, there are sets of proclamation definitions corresponding to the examples in Section 6.4.2.

Choose Option 5 for myams.tpl by deleting all the lines related to the other options. You are left with the lines
\% Theorems, corollaries, lemmas, and propositions, in the \% most emphatic (plain) style. All are numbered separately.
\% There is a Main Theorem in the most emphatic (plain)
\(\%\) style, unnumbered. There are definitions, in the less
\(\%\) emphatic(definition) style. There are notations, in the
\% least emphatic (remark) style, unnumbered.
```

\theoremstyle\{plain\}
\newtheorem\{theorem\}\{Theorem\}
\newtheorem\{corollary\}\{Corollary\}
\newtheorem*\{main\}\{Main Theorem\}
\newtheorem\{lemma\}\{Lemma\}
\newtheorem\{proposition\}\{Proposition\}
\theoremstyle\{definition\}
\newtheorem\{definition\}\{Definition\}
\theoremstyle\{remark\}
\newtheorem*\{notation\}\{Notation\}

```

Step 3 Two more choices are presented. You can have either one or two authors-for more complex situations, see Section 11.2.4. For the myams.tpl template, choose one author by deleting everything between
\% Two authors
and
\% End Two authors
You are left with
\begin\{document\} }
\% One author
\title[shorttitle]\{titleline1\\
titleline2\}
\author\{name\}
\address\{line1\\
line2\\
line3\}
\email\{name@address\}
\urladdr\{http://homepage\}
\thanks\{thanks\}
\% End one author
\keywords\{keywords\}
\subjclass[2000]\{Primary: subject; Secondary: subject\}
\date\{date\}
\begin\{abstract\} }
abstract
```

\end{abstract}

$$
\begin{thebibliography}{99}
\end{thebibliography}
$$
\end{document}
In the top matter, fill in your own personal information. For instance, I edited
name
to read
George~Gr\"{a}tzer

I also edited \address, \email, \urladdr, and \thanks. After editing, I had the following:

```
```

\% top matter

```
\% top matter
\title[shorttitle]{titleline1\\
 titleline2}
\author{George~Gr\"{a}tzer}
\address{University of Manitoba\\
 Department of Mathematics\\
 Winnipeg, MB R3T 2N2\\
 Canada}
\email{gratzer@ms.umanitoba.ca}
\urladdr{http://server.maths.umanitoba.ca/homepages/gratzer/}
\thanks{Research supported by the NSERC of Canada.}
\keywords{keywords}
\subjclass[2000] {Primary: subject; Secondary: subject}
\date{date}
\begin{abstract}
 abstract
\end{abstract}
\maketitle
\begin{thebibliography}{99}
\end{thebibliography}
\end{document}
```

Since this template is meant to be used for all my future articles, I do not edit the lines that change from article to article ( $\backslash$ title, $\backslash$ keywords, and so on).

Remember that the short title is for running heads, the title shown at the top of every odd-numbered page other than the title page. If the title of your article is only one line long, delete the separation mark $\backslash \backslash$ and the second line, except for the closing brace. If the full title of your article is short, delete [shorttitle].

Now save myams.tpl. I saved my template under the name ggamsart.tpl (in the samples folder, see page 4). You can also make an additional template with two authors to be used as a template for joint articles. Note that at the end of the template, just before the line \end\{document\}, there are two lines: }
\begin\{thebibliography\}\{99\} }
\end\{thebibliography\} }
The argument of \begin\{thebibliography\} should be } 9 if there are fewer than 10 references, 99 with $10-99$ references, and so forth. We discuss how to format bibliographic items in Sections 4.2.4 and 10.5.1. The templates for bibliographic items are listed after the \end\{document\} line. }

To make sure that you do not overwrite your template, I recommend that you make it read-only. How you do this depends on your computer's operating system.

You should modify the template you create in this section to the template of the journal you submit your article to. In the samples folder, you find the AMS template for the Proceedings of the AMS, called amsproc.template.

### 11.5 Options

The amsart document class supports a number of options, affecting many attributes. For each attribute there is a default value that is used if a value is not specified.

## Font size

Options: 9pt
10pt default
11pt
12pt
This option declares the default font size. You may want to use the 12 pt option for proofreading:

```
\documentclass[12pt]{amsart}
```

Remember, however, that changing the font size changes the line breaks, so changing the 12 pt option back to 10 pt may require that you make some adjustments in the text (see Section 2.3).

## Paper size

Options:	letterpaper	(8.5 inches by 11 inches)	default
	legalpaper	$(8.5$ inches by 14 inches $)$	
	a4paper	$(210 \mathrm{~mm}$ by 297 mm$)$	

## Equations and equation numbers

A number of options deal with the placement of equations and equation numbers.

## Options: leqno default <br> reqno

By default, equation numbers are placed on the left, the default leqno option. The reqno option places the equation numbers on the right.

Option: fleqn
This option positions equations a fixed distance from the left margin rather than centering them. The fleqn option is typically used in conjunction with the reqno option. Here is how an equation looks with the fleqn and reqno options:
$\int_{0}^{\pi} \sin x d x=2$
typed as

```
\begin{equation}\label{E:firstInt}
 \int_{0}^{\pi} \sin x \, dx = 2
\end{equation}
```

Options: tbtags
centertags default
The tbtags option uses top-or-bottom tags for a split environment, that is, it places the equation number level with the last line if numbers are on the right, or level with the first line if the numbers are on the left:

$$
\begin{align*}
f & =\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2}  \tag{1}\\
& =\left(x_{1} x_{2} x_{3} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} x_{5} x_{6}\right)^{2} \\
& =\left(x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{1} x_{3} x_{4} x_{5}\right)^{2}
\end{align*}
$$

The centertags option (the default) vertically centers the equation number in a split subsidiary math environment.

## Limits

```
Options: intlimits
 nointlimits default
```

The intlimits option places the subscripts and superscripts of integral symbols above and below the integral symbol rather than on the side in a displayed math formulawith this option you can use the \nolimit command to disable the option for one integral. The nointlimits option positions the subscripts and superscripts of integral symbols on the side.

```
Options: sumlimits default
 nosumlimits
```

The sumlimits option places the subscripts and superscripts of large operators, such as $\sum, \Pi, \amalg, \otimes, \oplus$, above and below the large operator in a displayed math formula. nosumlimits positions them on the side (see Table 7.5 and Section B.7.1).

```
Options: namelimits default
 nonamelimits
```

The namelimits option places the subscripts and superscripts of operators with limits such as det, inf, lim, max, min, and so on, above and below the operator in a displayed math formula. nonamelimits positions them on the side (see Tables 7.2, 7.3, and Section B.7).

## Two-sided printing

```
Options: twoside default
 oneside
```

The twoside option formats the output for printing on both sides of the paper. The alternative is the oneside option. This option influences running heads, the placement of page numbers, and so on.

## Two-column printing

Options: twocolumn
onecolumn default
The twocolumn option typesets the document in two columns.

## Title page

Options: titlepage
notitlepage default
The titlepage option creates a separate title page including the abstract.
The notitlepage option splits the top matter between the first and last pages of the typeset article.

## Draft

Options: draft
final default
The draft option prints a slug in the margin next to each line that is too wide. The final option does not. Note that this option is passed on to some packages, such as graphicx.

## Fonts

Option: noamsfonts
With this option, the document class does not load the packages necessary for the use of the AMSFonts font set.

Option: psamsfonts
The psamsfonts option tells ITTEX to use the PostScript version of the AMSFonts set.

## No math

Option: nomath
By default, amsart loads the amsmath package (which, in turn, loads three more math packages). If you want to use the title page and related features without the math features, you can use the nomath option.

### 11.6 The AMS packages

If you follow the recommendation of this book and begin each article with

```
\documentclass{amsart}
\usepackage{amssymb,latexsym}
```

then you can safely ignore most of the information in this section. There are two minor exceptions, the packages amsxtra and upref.

However, if you use a document class that does not load the same packages that amsart loads, then you have to load the packages needed for your work. Typically, you have
msthm\}\usepackage\{amssymb,latexsym\}asaminimum.TheAMSdistributioncontainsmanypackagesthatcanbeloadedtogetherorbythemselves.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## Math enhancements

amsmath The primary math enhancement package, which loads the four packages, amsgen, amsbsy, amsopn, and amstext.
amsbsy Provides two commands for the use of bold math symbols, \boldsymbol and \pmb (see Section 8.3.3).
amscd Commands for creating simple commutative diagrams (see Section 9.8).
amsgen An auxiliary package that is never invoked directly. It is loaded by all the AMS math packages (except for upref).
amsopn Provides operator names and also the \DeclareMathOperator command for defining new ones (see Section 7.6).
amstext Defines the \text command and redefines commands such as \textrm and \textbf to behave like the $\backslash$ text command (see Section 7.4.6).
amsxtra Provides the "sp" math accents (see Sections 7.7 and B.8) and loads the amsmath package.
upref Ensures that the $\backslash r e f$ command always produces upright numbers.

## AMSFonts

amsfonts Contains the basic commands needed to utilize the AMSFonts. It also defines the ndwhichmakestheEulerFrakturmathalphabetavailable(seeSection8.3.2).IfyouusethePostScriptAMSFontsfontset,youshouldloadthispackagewiththeoption\usepackage[psamsfonts]\{amsfonts\}Inaddition,ifyouwanttousethe12ptdocumentclassoption,thenyoumustalsoloadtheexscalepackage(seeSection12.3):\usepackage\{exscale\}amssymbDefinesthesymbolnamesforamsfonts.Itloadsamsfonts.eucalReplacesthecalligraphicmathalphabetwiththeEulerScriptmathalphabet(seeSection8.3.2).Ifyouloaditwiththeoptionmathscr,asin\usepackage[mathscr]\{eucal\}thenboththe\mathscrandthe\mathcalcommandsareavailable,soyoucanhaveboth$\mathcal{CE}$and$\mathcal{C}\mathcal{E}$,typedasundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
$\mathcal{C}\mathcal{E}$ and $\mathscr{C}\mathscr{E}$
```

eufrak Defines the Euler Fraktur math alphabet (see Section 8.3.2).

## Loading packages

amsart contains code to provide more flexible formatting of proclamations and the proof environment (see Sections 6.4.2 and 6.5). By loading the amsthm package you can add this functionality to a non-AMS document class. The amsthm package loads the amsgen package.
amsart loads four packages from the math enhancements group, the amsmath, amsbsy, amstext, amsopn, and amsgen packages, and the amsfonts package from the AMSFonts group.

A typical article using the legacy article document class (see Section 12.1) and the AMS enhancements would normally have
icle\}\usepackage\{amsmath\}\%mathenhancements\usepackage\{amssymb,latexsym\}\%AMSFontsandLaTeXsymbolnames\usepackage\{amsthm\}\%proclamationswithstyleandperhapsthefollowing:\usepackage\{eucal\}\%EulerScriptNotethatitisnotcriticalforyoutorememberwhichpackagesloadothers.Noharmisdoneifyoutype\usepackage\{amsmath\}\usepackage\{amsbsy\}Theamsbsypackageisloadedbytheamsmathpackage,andthe\usepackage\{amsbsy\}lineisignoredby$\mathrm{LT}_{\mathrm{E}}\mathrm{X}$.Allthemathrelatedoptionsofamsart(seeSection11.5)arealsooptionsoftheamsmathpackage.So,forinstance,ifyouwanttheequationnumbersontheright,loadamsmathwiththereqnooption:\usepackage[reqno]\{amsmath\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## Multiple indices

The AMS distribution also contains the package amsmidx for creating multiple indices. This package is discussed in Section 17.5.

## Legacy document classes

Even though the AMS spent a few decades refining the amsart document class, some of the legacy document classes of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ are still around. If you want to whip up a quick report or write up a research note, the legacy article or report document classes may serve you well.

In this chapter, we discuss some of the legacy $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document classes. We take up the book document class in Chapter 18.

We do not discuss the slides document class for preparing slides. It is now considered obsolete. Use instead the beamer class which we discuss in Chapter 14 or the FoilTEX class discussed in Section 4.4.

We conclude this chapter with a description of the components of the standard ${ }^{\mathrm{AT}} \mathrm{E} \mathrm{X}$ distribution.

### 12.1 Articles and reports

The article and report document classes are very similar. There are two substantive differences to remember:

1. The report document class provides a separate page for the abstract by default, the article document class does not.
2. The report document class has two additional sectioning commands, \chapter and $\backslash$ part. We discuss these commands in Section 18.1.1.
In the samples folder (see page 4) is the document legacy-article.tex, a variant of the introductory sample article, intrart.tex of Chapter 4. The first page of this is typeset on the following page.

### 12.1.1 Top matter

For a detailed discussion of the top matter, refer to Chapter 10, in particular Sections 10.1 and 10.3 -see also Figure 10.1. Here is the top matter of the legacy article:

\title\{A construction of complete-simple<br>

distributive lattices\}
\author\{George~A. Menuhin\thanks\{Research supported
by the NSF under grant number 23466.\}<br>
Computer Science Department $\backslash \backslash$
Winnebago, MN 23714<br>
menuhin@cc.uwinnebago.edu\}

\date\{March 15, 2000\}
\maketitle
There are four commands for the top matter: \title, \author, \thanks, and $\backslash$ date.

## Rule ■ Top matter for the article document class

1. If necessary, break the title into separate lines with $\backslash \backslash$. Do not put a $\backslash \backslash$ at the end of the last line.
2. \thanks places a footnote at the bottom of the first page. If it is not needed, omit it.
3. Separate the lines of the address with $\backslash \backslash$. Do not put a $\backslash \backslash$ at the end of the last line.
4. Multiple authors are separated by \and. There is only one \author command, and it contains all the information-name, address, support-about all the authors. There is no $\backslash \backslash$ command before the $\backslash$ and command.
5. If there is no \date command, LATEX will insert the date on which you typeset the file (\date\{\today\} will produce the same result). If you do not want any date to appear, type \date\{\}. For a specific date, such as February 21, 2007, type \date\{February 21, 2007\}.
6. The \title command is the only required command. The others are optional.

# A construction of complete-simple distributive lattices 

George A. Menuhin*<br>Computer Science Department<br>Winnebago, MN 23714<br>menuhin@cc.uwinnebago.edu

March 15, 2006


#### Abstract

In this note, we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices in which there are only two complete congruences.


## 1 Introduction

In this note, we prove the following result:
Theorem 1 There exists an infinite complete distributive lattice $K$ with only the two trivial complete congruence relations.

## 2 The $\Pi^{*}$ construction

The following construction is crucial in the proof of our Theorem:
Definition 1 Let $D_{i}$, for $i \in I$, be complete distributive lattices satisfying condition (J). Their $\Pi^{*}$ product is defined as follows:

$$
\Pi^{*}\left(D_{i} \mid i \in I\right)=\Pi\left(D_{i}^{-} \mid i \in I\right)+1 ;
$$

that is, $\Pi^{*}\left(D_{i} \mid i \in I\right)$ is $\Pi\left(D_{i}^{-} \mid i \in I\right)$ with a new unit element.
Notation 1 If $i \in I$ and $d \in D_{i}^{-}$, then

$$
\langle\ldots, 0, \ldots, d, \ldots, 0, \ldots\rangle
$$

is the element of $\Pi^{*}\left(D_{i} \mid i \in I\right)$ whose $i$-th component is $d$ and all the other components are 0.

[^5]As you see, the rules for the \date command here differ slightly from the rules for the \date command in the amsart document class. However, the rules for the command \author here are very different from the rules for the \author command in the amsart document class.

For two authors use the following template:
\author\{name1\thanks\{support1\}<br>\}
address1line1<br>
address1line2<br>
address1line3
\and
name2\thanks\{support2\}<br>

address2line1<br>
address2line2<br>
address2line3\}
Note the use of the \and command, which separates the two authors.
One more difference to keep in mind. Place the abstract after the \maketitle command.

### 12.1.2 Options

The article and report document classes have a similar range of options. These are listed below.

## Font size

Options: |  | 10 pt |  |
| :--- | :--- | :--- |
|  | 11 pt |  |
|  | 12 pt |  |

Each option declares the specified size to be the default font size.

## Paper size

Options:	letterpaper	(8.5 inches by 11 inches)
legalpaper	(8.5 inches by 14 inches $)$	
executivepaper	$(7.25$ inches by 10.5 inches $)$	
	a4paper	$(210 \mathrm{~mm}$ by 297 mm$)$
a5paper	$(148 \mathrm{~mm}$ by 210 mm$)$	
	b5paper	$(176 \mathrm{~mm}$ by 250 mm$)$

## Draft

Options: draft
final default

The draft option places a slug in the margin next to each line that is too wide (see Section 2.3). The final option does not. Note that this option is passed on to some packages, such as graphicx. To prevent this, invoke graphicx with the final option.

## Landscape printing

## Option: landscape

The landscape option typesets the document in landscape format, swapping the width and height of the paper.

## Two-sided printing

```
Options: twoside
 oneside default
```

The twoside option formats the output for printing on both sides of the paper.

## Two-column printing

Options: twocolumn
onecolumn default
The twocolumn option typesets the document in two-column format. This option has many problems. It is better to use the multicol package (see Section 12.3.1).

Title page

$$
\begin{array}{lll}
\text { Options: } & \text { titlepage } & \text { default for report } \\
& \text { notitlepage } & \text { default for article }
\end{array}
$$

The titlepage option creates a separate title page and places the abstract on a separate page. The notitlepage option places the title and the abstract together on the first page.

## Equations and equation numbers

```
Options: leqno
 reqno default
```

The leqno option places any equation number in the document on the left side and reqno places them on the right.

Option: fleqn
The fleqn option sets displayed formulas flush left. This option is typically used in conjunction with the reqno option.
[1] Soo-Key Foo.
Lattice Constructions.
PhD thesis, University of Winnebago, Winnebago, MN, December 1990.
[2] George A. Menuhin.
Universal Algebra.
D. Van Nostrand, Princeton, 1968.
[3] Ernest T. Moynahan.
Ideals and congruence relations in lattices. II.
Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7:417-434, 1957.
[4] Ernest T. Moynahan.
On a problem of M. Stone.
Acta Math. Acad. Sci. Hungar., 8:455-460, 1957.
[5] Ferenc R. Richardson.
General Lattice Theory.
Mir, Moscow, expanded and revised edition, 1982.
Figure 12.1: The openbib option.

## Bibliography

Option: openbib
The openbib option typesets the bibliography in a spread out "open" format (see Figure 12.1).

## Combinations

Of course, these options can be combined with each other and are also used by most legacy document classes. For instance,
\documentclass[12pt, a4paper, twoside, twocolumn] \{report\}
produces a double-columned, two-sided report on A4 paper, the European standard, at the 12-point font size.

### 12.2 Letters

The letter document class was developed for writing letters. One document can contain any number of letters, each in its own letter environment. In the following example (letter.tex in the samples folder) there is only a single letter:

```
\% Sample file: letter.tex
```

\documentclass\{letter\}

```
\begin{document}
\address{George Gr\"{a}tzer\\
 Department of Mathematics\\
 University of Manitoba\\
 Winnipeg, MB, R3T 2N2\\
 Canada}
\signature{George Gr\"{a}tzer}
\date{}
\begin{letter}{Prof.~ John Hurtig\\
 Computer Science Department\\
 University of Winnebago\\
 Winnebago, Minnesota 23714}
\opening{Dear John,}
Enclosed you will find the first draft of the
five-year plan.
\closing{Friendly greetings,}
\cc{Carla May\\
 Barry Bold}
\encl{Five-year plan}
\ps{P.S. Remember our lunch meeting tomorrow! G.}
\end{letter}
\end{document}
```

Figure 12.2 shows the typeset letter.
The argument of the letter environment is the name and address of the recipient. It is a required argument and if it is omitted, you get an error message such as

```
! Incomplete \iffalse; all text was ignored
 after line 21.
<inserted text>
 \i
```

1.21 \end\{letter\} }

As with all multiline arguments, the lines are separated by $\backslash \backslash$.
The arguments of some commands may apply to all the letter environments in the document. Such commands should be placed before the first letter environment. In the example, \signature and \address are so placed.

If the \date command is absent, today's date is typeset. If you want no date, use an empty argument $\backslash$ date $\}$, as in the example. If you want all the letters in the same document to have the same date, the \date command should precede the first letter environment.

## George Grätzer

Department of Mathematics
University of Manitoba
Winnipeg, MB, R3T 2N2
Canada

Prof. John Hurtig<br>Computer Science Department<br>University of Winnebago<br>Winnebago, Minnesota 23714

Dear John,
Enclosed you will find the first draft of the five-year plan.
Friendly greetings,

George Grätzer
cc: Carla May
Barry Bold
encl: Five-year plan
P.S. Remember our lunch meeting tomorrow! G.

Figure 12.2: A letter.

Many of the options listed in Section 12.1.2 can also be invoked for the letter document class.

### 12.3 The $L A T_{E} X$ distribution

The LTTEX $_{\mathrm{E}} \mathrm{X}$ distribution contains a number of document classes and packages, most of which you have probably received with your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ software. If you find that you are missing some files, see Section E. 1 on how to get them.

The files of the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ distribution on CTAN are grouped in the directory
/pub/tex/macros/latex
into four subdirectories.
base contains all the files necessary to install the system. As a rule, for every package, say, exscale, it contains two files, exscale.ins and exscale.dtx. Typesetting the first gives you exscale.sty and typesetting the second produces the user guide and the commented source code. Since most $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ implementations install the content of the unpacked directory, this directory is not for the average user.
doc contains $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ documentation in PDF files and also the $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ News.
required contains the directories amslatex, babel, cyrillic, graphics, psnfss, tools.
unpacked contains the unpacked $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution. Since most $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ implementations install this, you may never need it.

Of the packages and tex files included in the unpacked folder, the following should be of special interest to readers of this book.
latexsym Some symbol definitions (see the tables in Appendix B).
alltt The alltt environment, which is like the verbatim environment except that $\backslash$, and $\{$,$\} retain their usual meanings.$
exscale Scaled versions of the math extension font.
makeidx Commands for producing indexes (see Chapter 17).
showidx A package to allow you to typeset the index entries in the margin of your typeset document (see Section 17.1).
nfssfont.tex Generates font tables for use with the \symbol command (see Section 5.4.4).

There is also the file fixltx2e.sty in the unpacked directory (and the corresponding fixltx2e.dtx and fixltx2e.ins in the base directory). This file contains fixes to latex.ltx, the main $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ file, and also some new commands that did not make it into the current release. The last fixltx2e. sty (Dec. 2005) contains two important additions. It complements the \textsuperscript command (see Section C.4) with a \textsubscript command.

More importantly, it introduces a very useful new command $\backslash$ TextOrMath. This command has two arguments and it typesets the first in text and the second in math. For instance, if in newlattice.sty (see 15.3 ) you define
\newcommand\{\Gra\}\{\TextOrMath\{\$\alpha\$\xspace\}\{\alpha\}\}
then you can type $\backslash$ Gra in both test and math. Indeed.

```
this is \Gra in text, and this is $\Gra - x^2$ in math
```


## typesets as

this is $\alpha$ in text, and this is $\alpha-x^{2}$ in math

If you want to use these commands, include the line
e\{fixltx2e\}inthepreamble.IntherequiredfoldertherearesomemajorsoftwaredistributionsrelatedtoLATEX.amslatexDiscussedindetailinthisbook,thisdirectorycontainstheAMSmathpackagesanddocumentclasses,whilethefont-relatedAMSfilesareinthedirectory/tex-archive/fonts/amsfonts/latex/babelFortypesettinglanguagesotherthanAmericanEnglish.cyrillicFortypesettingCyrilliccharacters.graphicxFortheinclusionandtransformationofgraphicsandfortypesettingincolor(seeSection10.4.3).Thispackagerequiresthatyouhaveasuitableprinterdriver.psnfssFortypesettingwithawiderangeofPostScriptfonts(seeSectionF.1).toolsArangeoftoolsformanagingdocumentproductiondiscussedinthenextsection.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Each of these packages comes with its own documentation. They are also described in The ${ }^{A T} T_{E} X$ Companion, 2nd edition [46].

### 12.3.1 Tools

Some of these packages are so important that they could well have been incorporated into $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ proper. Here is a brief listing.
afterpage Implements the \afterpage command. The commands specified in its argument are expanded after the current page is output.
array Contains extended versions of the array and tabular environments with many extra features.
bm Gives access to bold math symbols.
calc Allows algebraic manipulation of lengths and counter values when specifying lengths and counters.
dcolumn Provides alignment on decimal points in tabular entries. It requires the array package.
delarray Adds "large delimiters" around arrays. It requires the array package.
enumerate Provides customized enumerate environments (see Sections 6.2.4 and also Sections 15.2.1, 15.3, 15.4).
fileerr Helps with missing files.
fontsmpl Produces a test file for displaying "font samples".
ftnright Places all footnotes in the right-hand column of documents typeset with the twocolumn document class option.
hhline Provides control over horizontal lines in tables.
indentfirst Indents the first paragraph of each section.
layout Shows the page layout defined by a document class (see Section 10.6).
longtable Helps to create multipage tables. It does not require the array package, but it uses array's extended features if both packages are loaded.
multicol Provides multicolumn typesetting with some advanced features.
rawfonts Preloads fonts using the old font names of ETEX 2.09.
showkeys Selectively prints the labels used by \label, \ref, \cite, and so forth, in the margin (see Section 10.4.2).
somedefs Elective handling of package options. It is used by the rawfonts package.
tabularx Defines a variant of the tabular environment where all the columns are the same width. It requires the array package.
theorem Allows the definition of proclamations in flexible formats. The AMS variant, the amsthm package, is discussed in Section 6.4.2.
trace Tracing help for macro writers.
varioref Provides smart as well as multilingual handling of page references.
verbatim Extends the verbatim environment and provides the comment environment (see Sections 5.5.1 and 6.8).
xr Creates cross-references among documents.
xspace Provides a "smart space" command that helps you avoid the common mistake of missing space after commands. It is mainly used in commands that expand to some text (see Section 15.1.1).

All of these packages are discussed in The ${ }^{L A} T_{E} X$ Companion, 2nd edition [46].

CHAPTER


## PDF documents

### 13.1 PostScript and PDF

### 13.1.1 PostScript

PostScript is the preeminent platform and device independent page-description and programming language, introduced by Adobe Systems Inc. It describes the placement and shapes of all the elements in the document, including the fonts. Documents placed on the Web in PostScript format can be downloaded to any computer and print identically on all PostScript printers. Until the appearance of PDF, PostScript was the format of choice for sharing LTTEX $_{\mathrm{E}} \mathrm{X}$ articles with diagrams or complex forms. There are a number of disadvantages to using PostScript files on the Web:
        - The files tend to be very large.
        - They cannot be viewed until the whole file has been downloaded.
        - If a PostScript file does not include a particular font used in the document and you do not have that font installed on your computer, then another font-usually Courieris substituted causing graphically unacceptable rendering.


### 13.1.2 PDF

All of these concerns have been addressed by Adobe's Portable Document Format (PDF). See Adobe Systems' PDF Reference, Version 1.6, 5th edition [2] for a complete description of this file format.

PDF is based on the PostScript language, with some important differences:
        - PDF is much more concise than PostScript. A PDF file is normally about 10 percent of the size of the corresponding PostScript file.
        - Missing fonts are usually substituted by fonts with the same metrics, so that the size of the substituted text is the same as that of the original. In particular, there are no incorrect line breaks caused by the substitution.
        - PDF files allow partial inclusion of fonts. As a result, it is much easier to obtain permission to include proprietary fonts in PDF documents.
        - PDF files can be downloaded and viewed in a Web browser one page at a time, without having to wait for the whole file to download first.
        - Many IATEX implementations, including the two discussed in Appendix A, produce PDF files.

PDF files and Adobe Acrobat Professional offer many nice features, including:
        - Efficient navigational tools
        - Searching and indexing capability for documents and even for collections of documents
        - Bookmarks
        - Thumbnails of pages
        - Limited editing
        - Annotations (notes, text, and voice) and markups
        - Hyperlinks to the same document or to another document or Web site (see Section 13.1.3)
        - The inclusion of programs, particularly JavaScript
        - The creation of interactive features
        - The inclusion of multimedia objects such as video and sound files

If you use a ${ }^{\mathrm{EA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ implementation that produces the typeset file in PDF format, then you already have the file you need. If not, the typeset file will be a DVI file,
and you have to convert it to PDF format. Usually, this is a two step process. First you convert the DVI file to PostScript and then from PostScript to PDF.

On a Mac, just click on a PostScript file and it is converted to PDF.
If you have a PostScript printer, you can "print to file" to create the PostScript version. To convert from Postscript to PDF, you need special software such as Adobe Acrobat Professional-free utilities to do this are also available for all operating systems. When downloaded, a PDF file can be read and printed using Adobe Reader (or some other PDF viewer). Adobe Reader is available from Adobe free of charge for a PC, Mac, and some UNIX variants (see Section E. 1 on how to get it).

PDF files can also be used to make legacy documents available on the Internet. For instance, if you go to my home page,
http://www.maths.umanitoba.ca/homepages/gratzer/
and click on Mathematical articles, then 1980-89, in the bottom frame you will find entry 102, which links to a PDF file. I created that PDF file by scanning the pages of the original article, converting them to PDF files (with Adobe Photoshop), and finally stringing them together into a single document (using Adobe Acrobat Professional). The scanned pages totalled 32 MB , the PDF file is 320 KB . The printed version of the PDF file is somewhat lower in quality than the original, but it is still quite satisfactory. See my article [32] on some practical pointers about scanning and PDF files.

### 13.1.3 Hyperlinks

With Adobe Acrobat Professional you can place hyperlinks in PDF documents. Clicking on a hyperlink, you jump to another location in the same document, to an electronic document, or to a Web site. For instance, in the table of contents, you can put a hyperlink to Chapter 3, so that clicking on it takes you to Chapter 3. Adobe Acrobat's help system has ample information on how to set up links.

### 13.2 Hyperlinks for $\operatorname{LT}_{E} X$

It is tedious to set hyperlinks one at a time in your PDF file. Would it not be nice if hyperlinks corresponding to cross-references were set automatically? For instance, clicking on Lemma 6 in

This follows from Lemma 6 and the relevant definitions.
would cause the display to jump to the page containing Lemma 6.
Sebastian Rahtz's hyperref package (maintained now by Heiko Oberdiek) does just that (see Section E. 1 on how to get it).

### 13.2.1 Using hyperref

You invoke the hyperref package with the command

## \usepackage\{hyperref\}

as the last epackagelineinthepreambleofyour$\mathrm{ET}_{\mathrm{E}}\mathrm{X}$document.Ifthisdoesnotdothejob,trythisformat,specifyingtheprinterdriver:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\usepackage[driver]{hyperref}
```

The driver is one of hypertex, dvips, dvipsone, ps2pdf, tex4ht, pdftex, dvipdf, dvipdfm, dvipdfmx, dviwindo, vtex, textures. If none of these work, you are out of luck.

Figure 13.1 shows a page fragment from a mathematical article with hyperlinks to some sections, theorems, and citations automatically created by hypertex.

The construction of the uniquely complemented lattice representing a given monoid is introduced in Section 4. It is based on V. Koubek and J. Sichler [12]. Section 5 proves that this construct has many simple sublattices. Finally, in Section 6, we put all these pieces together to construct the lattice $L$ for the Main Theorem.

To prove Theorem 1 we need a different construction, which is presented in Section_7

Figure 13.1: The hyperref package with the \autoref command.

See Section 13.2.4 for the autoref command. To see how hypertex works, look up the sampart-ref.tex article in the samples folder. It is the sample article enhanced with the hyperref package. The article uses the hyperref options

```
pagebackref,colorlinks,bookmarks=true
```

See Section 13.2.2 for the pagebackref and colorlinks options. The third option, bookmarks=true, is discussed in Section 13.2.3.

Copy sampart-ref.tex into the work folder and typeset it twice. The PDF file created for you has some of the hyperref features, but not all. Open the pdf file with Adobe Reader. Look at the left pane. Bookmarks is a table of contents of the article, with links to the named sections. Pages is a thumbnail sketches of the pages, with links to them.

### 13.2.2 backref and colorlinks

A useful addition to hyperref is David Carlisle's backref package. It is invoked as an option of hyperref:

```
\usepackage[backref]{hyperref}
```

The items in your bibliography will be followed by a list of sections in which the bibliographic reference is cited. Each number printed after the cited reference becomes a hyperlink to the relevant section. Alternatively, you can use the pagebackref option, which produces a list of page numbers. Figure 13.2 shows a page fragment from a bibliography displaying lists of section numbers. backref can be used to check if all items in the bibliography have actually been referenced in the article. Any reference that has not been cited does not have a page listed.
[10] G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639-647. 1 1
[11] , On the endomorphism monoid of complemented lattices, AMS Abstract 97T-06-98. 1
[12] $\overline{\mathrm{V}}$. Koubek and J. Sichler, Universality of small lattice varieties, Proc. Amer. Math. Soc. 91 (1984), 19-24. 1, 2, 4, 4.2, 4.3, 4.3, 4.3, 7
[13] H. Lakser, Simple sublattices of free products of lattices, Abstract, Notices Amer. Math. Soc.


Figure 13.2: The hyperref package with the backref option.

Another popular option is colorlinks, which colors the text of the links instead of underlining them.

### 13.2.3 Bookmarks

An important navigational feature of Acrobat is the ability to set and use bookmarks. If you choose View $>$ Navigation Tabs>Bookmarks in Adobe Reader, the navigation pane opens up showing the bookmarks.

For a sophisticated example, in Adobe Reader, view Adobe Reader Help, the menu item Help>Adobe Reader Help. ... The bookmarks form a table of contents. Clicking on a chapter title bookmark displays the first page of the chapter or its table of contents in the main pane. Click on the triangle next to the left of the chapter title bookmark. It opens up the chapter title to show the sections within the chapter, which are links to the sections.

The hyperref package option bookmarks=true makes bookmarks from the sectioning commands of the }_{\mathrm{E}}\mathrm{X}\)document,therebyproducingatableofcontentsevenifthedocumenthadnone.Youcaninvokealltheseoptionstogether:\usepackage[backref,colorlinks,bookmarks=true]\{hyperref\}Typesettingyour$\mathrm{IT}_{\mathrm{E}}\mathrm{X}$documentwiththebookmarks=trueoptionproducesanoutfile,whichcontainsentriessuchasundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\BOOKMARK [1][-]{section.1}{1. Introduction}{}
\BOOKMARK [1][-]{section*.2}{References}{}
```

Once you have produced the final version of your document, you should edit this file to make sure that it contains no $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ code. Math formulas in titles create havoc. So do
accented characters. hyperref does its best to convert internal encodings for accented characters to the encoding used by Acrobat Reader, but it is still best to avoid them. Once this file has been edited, add the line

## \let\WriteBookmarks\relax

at the start of the file to prevent it from being overwritten.

### 13.2.4 Additional commands

The hyperref package has dozens of commands and parameters, but we will discuss only four more commands.

## Preventing links

If you do not want a $\backslash r e f$ or $\backslash$ pageref command to appear as a link, you can use their *-ed forms, \ref* and \pageref*.

## Long links

An often heard complaint is that in the link Theorem $\underline{6}$, only the $\underline{6}$ can be clicked to activate the link, and it is too short. hyperref provides the \autoref command to help out. Instead of

```
Theorem~\ref{T:new}
```

you can simply type

```
\autoref{T:new}
```

and hyperref will provide the word Theorem so that the link becomes Theorem 6. The names supported by the \autoref command are listed in Table 13.2.4.

For my own use, I redefine:
\{Chapter\}
\{Section\}
\{Section\}
\{Section\}

## External links

External links can be links to websites or other files that are located on the Internet. Use the
$\backslash$ href \{address \}\{text \}

Command	Meaning
\figurename	Figure
\tablename	Table
\partname	Part
\appendixname	Appendix
\equationname	Equation
\Itemname	item
\chaptername	chapter
\sectionname	section
\subsectionname	subsection
\subsubsectionname	subsubsection
\paragraphname	paragraph
\Hfootnotename	footnote
\AMSname	Equation
\theoremname	Theorem

Table 13.1: Redefinable names supported by \autoref.
command to typeset text and make it into a link to the Web address (URL).
For instance, in your references, you may have

```
Robert Miner and Jeff Schaefer,
 \emph{Gentle intoduction to MathML.}\\\
 \href{http://www.webeq.com/mathml/gitmml/}
{http://www.webeq.com/mathml/gitmml/}
```

Then the last line of the address becomes a link and clicking on it takes you to the Web site. As an even fancier example, note the top matter command \urladdr (see Section 11.2.2) in sampart-ref.tex:
\urladdr\{\href\{http://math.uwinnebago.edu/menuhin/\}
http://math.uwinnebago.edu/homepages/menuhin/\}
Then, as part of Menuhin's address, you will find
http://math.uwinnebago.edu/menuhin/
Now clicking on the Web address will link to his Web page.
hyperref, of course, offers a lot more than I have presented here. For more detail, see the user manual and The $L^{A} T_{E} X$ Web Companion [18].

CHAPTER

## Presentations

In Section 4.4, we describe how a presentation is a PDF file that you open with Adobe Reader. You can put it in full screen mode ${ }^{1}$ (View $>$ Full screen), and then project the presentation one page at a time by pressing the space bar or the arrow keys.

Remember overhead transparencies? If we want to see half of what is on the transparency, we cover up the bottom part so that only the top part is projected. This way we have control over what the audience sees and when. We sometimes used overlays: placing another transparency on top of the projected one to modify it by adding text or graphics.

In this chapter, we discuss Till Tantau's beamer package to help you prepare presentations with overlays and with stunning visual effects. beamer relies on other packages such as the hyperref package (see Section 13.2) to establish links, Till Tantau's Portable Graphics Format package for creating graphics, Uwe Kern's xcolor package for coloring, the AMS packages for formatting math formulas and defining declarations, and some others.

The documentation for these packages runs to about a thousand pages. The good news is that you can use beamer "out of the box". You only have to learn about 20

[^6]commands-this is more than the one new command we had to learn in Section 4.4 but still an easily manageable task.

So we set ourselves in this chapter a modest goal, using beamer "out of the box". It is amazing how much you can achieve with a small investment of your time.

Getting started First, you need to install beamer. If you installed MikTeX for your PC or TeXShop for your Mac as described in Appendix A, beamer is already installed for you. Otherwise, consult Section E. 1 on how to get it.

Second, the tex file created for beamer has to be turned into a PDF file to make it into a presentation. For MikTeX, click on the PDF TeXify icon and for TeXShop, just click on Typeset. For other $\mathrm{T}_{\mathrm{E}} X$ installations, check the user manual on how to create a PDF output.

### 14.1 Quick and dirty beamer

We convert the article intrart.tex (in the samples folder) to a beamer presentation. We will remove some commands that are appropriate for an article but not for a presentation and add some commands-such as the frame commands-that are specific to presentations. This will not produce a very good presentation. Nevertheless, the conversion is a really quick introduction to some basic beamer concepts.

### 14.1.1 First changes

Open intrart.tex, save it as quickbeamer.tex in the work folder. The converted tex version and the presentation quickbeamer.pdf are both in the samples folder.

Make the following changes in the preamble and top matter:

1. Change the first line to
\% Introductory beamer presentation: quickbeamer.tex
2. Change the documentclass to beamer.
3. Delete the six epackageand\newtheoremlines—beamerloadsthenecessarypackagesanddefinesthesedeclarations.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
4. Change the \address to \institute-this is the beamer command for address.
5. Delete the abstract environment-this is not needed for the presentation.
Here is the new version of the preamble and top matter.
\%Introductory beamer presentation: quickbeamer.tex
\documentclass\{beamer\}
\begin\{document\} }

\title\{A construction of complete-simple<br>

```
 distributive lattices}
\author{George~A. Menuhin}
\institute{Computer Science Department\\
 University of Winnebago\\
 Winnebago, MN 53714}
\date{March 15, 2006}
\maketitle
```


### 14.1.2 Changes in the body

1. Delete the notation and proof environments, but not the contents, that is, delete the four lines
```
\begin{notation}
\end{notation}
\begin{proof}
\end{proof}
```

Both environments could theoretically stay, but the notation environment is not needed since in the next step we put Notation in the frame title. The proof environment is not suitable for presentations because it can only be used within a frame (see Section 5.3.2).
2. Cut the presentation into frames (pages, transparencies, foils) with the frame environments. After each \begin\{frame\} we put a } \backslash frametitle command. The ar- gument of the command is the "title" for the frame, displayed prominently at the top of the display.

It would be tedious to give you precise instructions on how to do this, instead refer to the quickbeamer. tex document (in the samples folder) for all the frame environments and $\backslash$ frametitle commands we have added.
3. Cut out the figure environment, except for the line

```
\centering\includegraphics{products}
```

which should be moved to follow the

```
\frametitle{Illustrating the construction}
```

line and accordingly delete (see Figure $\sim$ ref $\{$ Fi:products $\}$ ).

Now copy over the illustration products from the samples folder to the work folder and typeset. That's it, enjoy your first presentation.

### 14.1.3 Making things prettier

Now you make some small changes to quickbeamer. tex to utilize beamer's power for wonderful effects. Changes 1 and 3 are quite dramatic.

Save quickbeamer.tex with the name quickbeamer1.tex in the work folder. The edited version,quickbeamer1.tex, is in the samples folder along with the presentation quickbeamer1.pdf.

1. Add \usetheme\{Berkeley\} after the documentclass line.
2. Change \maketitle to
```
\begin{frame}
 \titlepage
\end{frame}
```

Make sure that the last (sub)section is followed by a frame, otherwise it will be missing from the table of contents.
3. Add this frame after the titlepage frame:

```
\begin{frame}
\frametitle{Outline}
\tableofcontents[pausesections]
\end{frame}
```

This creates a table of contents frame, with the section titles appearing one at a time.
4. Replace all instances of \{equation\} by \{equation*\}. In a presentation a reference to another frame is not recommended so equations should not be numbered. You might as well delete all the $\backslash$ label commands since these are not needed either.
5. In the second to last frame there are two references to equation numbers. Replace the text the congruence \eqref\{E:cong2\} with the congruence, and also replace $\backslash$ eqref $\{\mathrm{E}:$ comp $\}$ with the penultimate equation, or similar.
6. Change the bibliographic reference to

See also Ernest T. Moynahan, 1957.
Turning quickbeamer1.tex into a PDF file will get you a much prettier presentation. The first four pages of the new presentation are displayed in Figures 14.1 and 14.2 -unfortunately, without the pretty colors.

### 14.1.4 Adjusting the navigation

Looking at Figures 14.1 and 14.2, we see that the Berkeley theme turns the sidebar into a navigation device and the section titles produce the table of contents (the Outline frame). Remember to typeset a few times! But a number of problems come to light.


Figure 14.1: quickbeamer 1 presentation, pages 1 and 2.


Figure 14.2: quickbeamer 1 presentation, pages 3 and 4.

1. The title of the presentation is too long for the sidebar, so is the title of the second section.
2. There is no need to repeat the author's name in the sidebar.
3. It was natural for the article intrart.tex to have only two sections. But sections play a different role in a beamer presentation, they are navigation tools. The sidebar lists all the sections. It also highlights the section we are in. Moreover, by clicking on the name of a section, the presentation jumps there.
To correct these deficiencies, save the file quickbeamer1.tex as quickbeamer2.tex in the work folder. The edited version is in the samples folder along with the PDF file.

1. Change the $\backslash$ title command to
```
\title[Complete-simple distributive lattices]%
{A construction of complete-simple\\
distributive lattices}
and the second \section command to
```

```
\section[Construction]{The Π^{*} construction}
```

The bracketed parts are the short versions used in the sidebar.
2. Change the \author command to

```
\author[]{George~A. Menuhin}
```

The short version of the author command is blank, so the author's name will not be displayed in the sidebar.
3. Add the command

```
\section[Second result]{The second result}
```

before the frame of the same title and

```
\section{Proof}
```

before the proof. We even add

\section\{References\}

before the frame of the same name.
Figure 14.3 shows page 7 of the quickbeamer2 presentation-this corresponds to page 4 of the quickbeamer1 presentation; the Outline accounts for the difference. Note how all the deficiencies listed above have been corrected. Compare page 7 of this presentation with the Berkeley theme in Figure 14.3 and with the Warsaw theme in Figure 14.4. Themes are discussed in Section 14.5.

## Introduction

Complete-
simple distributive lattices

Introduction
Construction
Second result
Proof
References

In this note, we prove the following result:
Theorem
There exists an infinite complete distributive lattice $K$ with only the two trivial complete congruence relations.

Figure 14.3: quickbeamer2 presentation, page 7 with Berkeley theme.

Introduction | Introduction |
| ---: |
| Construction |
| Second result |
| Proof |
| References |$|$

In this note, we prove the following result:

## Theorem

There exists an infinite complete distributive lattice $K$ with only the two trivial complete congruence relations.

Figure 14.4: quickbeamer2 presentation, page 7 with Warsaw theme.

### 14.2 Baby beamers

In the previous discussions you may have noticed two interesting features. First, the Outline frame (table of contents) created two pages in the quickbeamer 1 presentation and five pages in the quickbeamer2 presentation. We discuss this in some detail now with the babybeamer presentations. You can find all the babybeamer presentations as tex and PDF files in the samples folder. Second, the sidebar shows some links. More about this in Section 14.2.7.

### 14.2.1 Overlays

The outline frame of the quickbeamer2 presentation created five pages in the PDF file. Observe how each page, from the second on, completely overlaps the previous one, making it appear that the previous one stayed put and an additional line is displayed "on top of it". In beamer terminology these pages are overlays or slides. The five overlays will be referenced as overlay $1, \ldots$, overlay 5 . A single frame may create one or many overlays. The subsequent sections discuss many more variants.
beamer has many commands creating overlays. We start with some examples of \pause, then \only, and \onslide.

We introduce overlays with some presentations. The first, babybeamer1, introduces the $\backslash$ pause command to create overlays.

```
% babybeamer1 presentation
\documentclass{beamer}
\begin{document}
\begin{frame}
\frametitle{Some background}
We start our discussion with some concepts.
\pause
```

The first concept we introduce originates with Erd $\backslash \mathrm{H}$ os.
\end\{frame\} }
\end\{document\} }
produces the presentation of Figure 14.5.

## Rule ■ The \pause command

1. A frame may have many $\backslash$ pause commands.
2. The $\backslash$ pause command cannot be given in an AMS multiline math environment.
Some background

We start our discussion with some concepts.

Some background

We start our discussion with some concepts. The first concept we introduce originates with Erdős.

Figure 14.5: babybeamer1 presentation.

You move past a $\backslash$ pause command the same way as you get to the next frame, by pressing the space bar or the forward arrow key.

Using the \pause commands you can create many overlays, each containing a little more material on the overlays. If this is all you need, skip to Section 14.2.7, you do not need the more detailed discussion of overlays in the next few pages.

We could have coded the same presentation with the \only command:

```
% babybeamer2 presentation
\documentclass{beamer}
\begin{document}
\begin{frame}
\frametitle{Some background}
\only<1,2>{We start our discussion with some concepts.}
\only<2>{The first concept we introduce originates
 with Erd\H os.}
```

```
\end{frame}
\end{document}
```

This presentation is slightly different from babybeamer1. Overlay 1 ignores the second \only command and displays the line as appropriate to display one line. Overlay 2 displays the two lines as appropriate to display two lines. As a result, the first line moves slightly up when passing from overlay 1 to overlay 2 . The argument of the \only command is typeset only on the overlays specified. On the other overlays, it is ignored.

If instead of the \only command you use the \onslide command (on slide, get it?), as in

```
\onslide<1,2>{We start our discussion with some concepts.}
```

\onslide<2>\{The first concept we introduce originates
with Erd\H os.\}
then the first line of overlay 2 completely overlaps the first line of overlay 1 , so the first line seems to stay put. The argument of the \onslide command is typeset on the overlays specified and on the other overlays it is typeset but invisible. This is the behavior you would want most often, but you may find that sometimes you prefer \only.

### 14.2.2 Understanding overlays

In Section 14.2.1 we introduced overlays, probably the most important new concept for presentations. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ typesets the content of a frame and the typeset material
        - appears on all overlays for the parts of the source (maybe all) not modified by any command with an overlay specification;
        - appears only on the overlays specified and is ignored on the other overlays for the arguments of the \only commands;
        - appears on the overlays specified and is typeset but made invisible on the other overlays for the arguments of the \onslide commands.

More on overlay specifications at the end of this section.
Here are some illustrations.

## Example 1

This is a very lonly<1>\{very, very\} important concept. \only<1,2>\{To start the definition \dots\}
will typeset overlay 1 as

This is a very very, very important concept. To start the definition...
and will typeset overlay 2 as
$\qquad$
This is a very important concept. To start the definition ...

## Example 2

What is $\$ 2+2 \$$ ? It is \onslide<2>\{\$4\$\}.
\only<1>\{Can you figure it out?\}
\onslide<2>\{I hope you all got it right.\}
will typeset overlay 1 as

What is $2+2$ ? It is . Can you figure it out?
and will typeset overlay 2 as

## $\Gamma$

What is $2+2$ ? It is 4 .
I hope you all got it right.

Note that there is room in overlay 1 for the number 4 .

## Example 3

```
What is $2+2$?
```

\onslide<2>\{It is $\{\$ 4 \$\}$.
Can you figure it out?
will typeset overlay 1 as

What is $2+2$ ?

Can you figure it out?
and will typeset overlay 2 as

What is $2+2$ ?
It is 4 .
Can you figure it out?

Note that there is room in overlay 1 for the "missing" second line.

## Overlay specifications

The angle brackets contain the overlay specification. Here are some more examples:
<1-2,4-> means all overlays from 1 to 2 , and all overlays from 4 onwards.
<-3> means all overlays up to 3 .
$<2,4,6>\quad$ means overlays 2,4 , and 6 .
In the presentation babybeamer2 we have two overlay specifications: $<1,2>$ and <2>. Maybe, <1-> and <2-> would be better, so that if you add a third overlay you do not have to change these.

The command \pause can only take the simplest overlay specification, a number. $\backslash$ pause<3> takes effect from overlay 3 on.

Note that overlay specifications are attached to commands but the overlays created are overlays of the frame in which the commands appear.

### 14.2.3 More on the $\backslash o n l y$ and $\backslash o n s l i d e ~ c o m m a n d s ~$

The \only and \onslide commands can accomplish everything the \pause command can and a lot more.

## The basic syntax

The syntax of \only is
\only<overlay spec>\{source\}
where overlay spec is the overlay specification and source is the code typeset by ETEX.

A (partial) syntax of \onslide is

```
\onslide<overlay spec>{source}
```

With the same syntax you can give overlay specifications to many commands, including \textbf, \textit, \alert—beamer's alternative to the \emph commandand then the command is in effect only on the overlays specified.

```
% babybeamer3 presentation
\documentclass{beamer}
\begin{document}
\begin{frame}
\frametitle{Some background}
\textbf<1>{We start our discussion with some concepts.}
\textbf<2>{The first concept we introduce originates
 with Erd\H os.}
\end{frame}
\end{document}
```

So the babybeamer3 presentation (see Figure 14.6) has two overlays, each with two lines of text. On overlay 1 the first line is bold, on overlay 2 the second line is bold.

Some background

We start our discussion with some concepts.
The first concept we introduce originates with Erdős.

Some background

We start our discussion with some concepts.
The first concept we introduce originates with Erdős.

Figure 14.6: babybeamer3 presentation.

## A different syntax

The command \only has an alternate syntax:

```
\only{source}<overlay spec>
```

So
\only<1>\{Can you figure it out?\}
and
\only\{Can you figure it out?\}<1>
accomplish the same.
With this syntax, you can define your own commands that allow overlay specifications. For instance, using the command \color\{blue\} defined in Section 14.2.9, you can define the command
\newcommand\{\myblue\}\{\only\{\color\{blue\}\}\}
Then
\myblue<2>\{Some more text\}
will color the text blue on overlay 2 only.

### 14.2.4 Lists as overlays

Lists may be presented one item at a time, for example the babybeamer 4 presentation in Figure 14.7 (in the samples folder) shows the four overlays of a list. R. Padmanabhan appears on the first, R. Padmanabhan and Brian Davey appear on the second, and so on. This is accomplished simply by adding the overlay specification <1-> to the item for R. Padmanabhan, the overlay specification <2-> to the item for Brian Davey, and so on.

```
% babybeamer4 presentation
\documentclass{beamer}
\begin{document}
\begin{frame}
\frametitle{Overlaying lists}
We introduce our guests:
\begin{itemize}
\item<1-> R. Padmanabhan
\item<2-> Brian Davey
```

Overlaying lists
We introduce our guests:

Overlaying lists

We introduce our guests:
        - R. Padmanabhan
        - Brian Davey

Overlaying lists

We introduce our guests:
        - R. Padmanabhan
        - Brian Davey
        - Harry Lakser

Overlaying lists

We introduce our guests:
        - R. Padmanabhan
        - Brian Davey
        - Harry Lakser
        - Dick Koch

Figure 14.7: babybeamer4 presentation.

```
\item<3-> Harry Lakser
\item<4-> Dick Koch
\end{itemize}
\end{frame}
\end{document}
```

Such an overlay structure is used so often that beamer has a shorthand for it, [<+->]. Here it is in babybeamer5.
\% babybeamer5 presentation
\documentclass\{beamer\}
\begin\{document\} }
\begin\{frame\} }
\frametitle\{Overlaying lists\}
We introduce our guests:
\begin\{itemize\}[<+->] }
- R. Padmanabhan
- Brian Davey
- Harry Lakser
- Dick Koch
\end\{itemize\} }
\end\{frame\} }
\end\{document\} }


This shorthand allows adding and reordering items without having to change overlay specifications.

Of course, if you do not want the items to appear in sequence, you have to use overlay specifications.

### 14.2.5 Out of sequence overlays

We now present an example of "out of sequence overlays". Look at Figure 14.8. I want to make this part of my presentation. First, I want to show the theorem, then illustrate it with the diagram at the bottom. Finally, I present the proof in the middle. So I need three overlays.

The theorem is on all three overlays, 1, 2, 3. Its illustration is on overlays 2 and 3, leaving room for the proof that appears only on overlay 3 .

This is an example of "out of sequence overlays". We code this in babybeamer6 (in the samples folder).

Since declarations, proofs, and the \includegraphics command may all have overlay specifications, this seems easy to accomplish.

```
% babybeamer6 presentation, first try
\documentclass{beamer}
\begin{document}
\begin{frame}
\frametitle{Overlaying declarations and graphics}
\begin{theorem}<1->
Every finite distributive lattice can be embedded
in a boolean lattice.
\end{theorem}
\begin{proof}<3->
Use join-irreducible elements.
\end{proof}
\includegraphics<2,->{cube}
\end{frame}
\end{document}
```

This does not work too well. On overlay 1 the theorem appears in the middle and then it jumps up to make room for the illustration. This is the same problem we encountered in the babybeamer2 presentation in Section 14.2.1 and the solution is also the same, the use of the \onslide command. Replace the line

```
\includegraphics<2,->{cube}
```

with

```
\onslide<2->{\includegraphics{cube}}
```


## Theorem

Every finite distributive lattice can be embedded in a boolean lattice.

Proof.
Use join-irreducible elements.


Figure 14.8: The slide to represent.

### 14.2.6 Blocks and overlays

You can think of a theorem in beamer as the contents of the theorem environment with a heading and, optionally, with an overlay specification, and with most themessee Section 14.5-colorful visual highlighting, see Figures 14.3 and 14.4.
beamer provides the block environment that works the same way except that you name the block. The (partial) syntax of the block environment is

```
\begin{block}<overlay spec>{title}
source
\end{block}
```

Blocks are shaped as theorems. If there is no title, you still need the braces. The overlay specification is optional.

As an example, save babybeamer6.tex as babybeamer6block.tex in the work folder (also in the samples folder along with the PDF file) and replace the theorem environment with
\begin\{block\}<1->\{Theorem\} }
Every finite distributive lattice can be embedded
in a boolean lattice.
\end\{block\} }
If you want a block of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ code with an overlay specification but with no title and no visual highlighting, use one of the commands, \onslide and \only.

### 14.2.7 Links

A presentation is a PDF file, so it is not surprising that you can set links of various types in a beamer presentation. Just as the hyperref package helps us with hyperlinks in a PDF file (see Section 13.2), the beamer package allows us to conveniently set links in a presentation.

Some links are automatically provided. If you look closer at Figures 14.1 and 14.2, you see that the section titles are shown in the sidebar. In fact, the sidebar is a navigation bar. First, it shows which section you are in. Second, clicking on a section title takes you to that section.

Creating a link is a two-step process.

1. Name the place you want to link to.
2. Create a button with the property that clicking on it jumps you to the designated place.
To illustrate this process, we modify the presentation babybeamer4. Open the file babybeamer4.tex and save it as babybeamer7.tex in the work folder (the edited version is in the samples folder along with the PDF file).

1. Name the frame you want to link to by adding a label to the \begin\{frame\} line. } In babybeamer7, add a label to the frame fourguests:
\begin\{frame\}[label=fourguests] }
Labels of frames are also useful for selective typesetting of your presentation, see Section 14.6.
2. Add the following line to babybeamer7:
```
\hyperlink{fourguests<3>}%
 {\beamergotobutton{Jump to third guest}}
```

This creates a link to the third overlay of the frame named fourguests, and creates a button, with the text Jump to third guest. Clicking on this button will jump to the third overlay of the frame fourguests.
3. To add variety to linking, include a new first frame:

```
\begin{frame}
\frametitle{First frame with a button}
Button example
Jumping to an overlay of a different frame
\bigskip
\hyperlink{fourguests<3>}%
{\beamergotobutton{Jump to third guest}}
\end{frame}
```

which has a button for jumping to the third overlay of the fourguests frame.
4. We also add a new third frame.

```
\begin{frame}
\frametitle{Third frame with a button}
Button example
Jumping to another frame
\bigskip
\hyperlink{fourguests}%
{\beamergotobutton{Jump to guest list}}
\end{frame}
```

with a button, with the text Jump to guest list. Clicking on this button will jump to the second frame, overlay not specified (defaults to 1 ).
5. Add a fourth frame,

```
\begin{frame}
\frametitle{Hidden link}
\hyperlink{fourguests}{Jumping to the guest list}
\end{frame}
```

introducing another version of the \hyperlink command:
\hyperlink\{fourguests\}\{Jumping to the guest list\}
which typesets the second argument as regular text, making it an invisible link. However, you may notice that the cursor changes when it hovers over the link. For instance, you may want to link the use of a concept to its earlier definition, where you also need a button for the return jump.

Here is babybeamer7:

```
% babybeamer7 presentation
\documentclass{beamer}
\begin{document}
\begin{frame}
\frametitle{First frame with a button}
```

Button example
Jumping to an overlay of a different frame
\bigskip
\hyperlink\{fourguests<3>\}\%
\{\beamergotobutton\{Jump to third guest\}\}
\end\{frame\} }
\begin\{frame\}[label=fourguests] }
\frametitle\{Overlaying lists\}
We introduce our guests:
\begin\{itemize\} }
- <1-> R. Padmanabhan
- <2-> Brian Davey
- <3-> Harry Lakser
- <4-> Dick Koch
\end\{itemize\} }


First frame with a button
Button example
Jumping to an overlay of a different frame
.


Overlaying lists		
We introduce our guests:   - R. Padmanabhan		
clump toxicides		

Overlaying lists

We introduce our guests:
        - R. Padmanabhan
        - Brian Davey
C.Jump to third guse

Third frame with a button

## Button example

Jumping to another frame

## - Jump to guet list

Figure 14.9: babybeamer7 presentation.

```
\hyperlink{fourguests<3>}%
{\beamergotobutton{Jump to third guest}}
\end{frame}
\begin{frame}
\frametitle{Third frame with a button}
Button example
Jumping to another frame
\bigskip
\hyperlink{fourguests}%
{\beamergotobutton{Jump to guest list}}
\end{frame}
\begin{frame}
\frametitle{Hidden link}
\hyperlink{fourguests}{Jumping to the guest list}
\end{frame}
\end{document}
```

Figure 14.9 shows all these buttons. We do not show overlays 3 and 4 of frame 2 and frame 4 , where the button is invisible.

### 14.2.8 Columns

Often, it is useful to put the display into columns. A simple illustration is given in babybeamer8:
\% babybeamer8 presentation
\documentclass\{beamer\}
\begin\{document\} }
\begin\{frame\} }
\frametitle\{Columns, top alignment\}
\begin\{columns\}[t] }
\begin\{column\}\{2in\} }
Is it true that there is no new result
on the Congruence Lattice Characterization Problem?
\end\{column\} }
\begin\{column\}\{2in\} }

```
F. Wehrung found a distributive algebraic lattice that
cannot be represented as the congruence lattice
of a lattice.
\end{column}
\end{columns}
\end{frame}
\end{document}
```

The environment is columns. It has an optional argument for alignment, t for top, c for center, and b for bottom.

The columns, usually two, are both in the column environment; the width of the column is in the argument; it can be given as a measurement- 2 in in the example-or relative to the width of the whole frame as $0.4 \backslash$ textwidth.

Figure 14.10 shows the babybeamer8 presentation.


Figure 14.10: babybeamer8 presentation.

### 14.2.9 Coloring

${ }^{\text {ETTEX's job is to produce articles and books that contain text, math formulas, and graph- }}$ ics. Such publications-with the exception of textbooks-cannot afford color printing. Presentations are different. If you prepare a color presentation, it will project in color.

Nevertheless, the color commands are of limited use even for presentations. You probably use the color scheme of the chosen theme (see Section 14.5), and have limited opportunity to color things yourself. If you do, be very careful, too much color distracts from the presentation but judicious use of color-say, for highlighting a word or phrase-may be very effective.
beamer uses the sophisticated xcolor package of Uwe Kern. It colors by specifying the color model: rgb (red, green, blue), or cmyk (cyan, magenta, yellow, black), or gray (black and white)-there are many more models to choose from-and how much
of each color you want to mix. So \color [rgb] \{0, 1,0$\}$ paints everything-within its scope-green. You can color some text green with the command

```
\textcolor[rgb]{0,1,0}{This text is green.}
```

There are seventeen predefined colors: red, green, blue, cyan, magenta, yellow, orange, violet, purple, brown, pink, olive, black, darkgray, gray, lightgray, and white. With the proper options, there are hundreds more. So the previous command could also be given as
\textcolor\{green\}\{This text is green.\}
or as
\{\color\{green\}This text is green.\}
To pretty thing up, you can use \colorbox\{green\}\{Green box\}, which puts the argument in a green box and \fcolorbox\{red\}\{green\}\{Green box\}, which also adds a red frame.
xcolor is automatically loaded by beamer. To make sure that xcolor is loaded with the options desired, you have to include these options in the preamble in the

```
\documentclass{beamer}
```

line. For instance, to have the dvipsnam option for xcolor, invoke beamer with
\documentclass[xcolor=dvipsnam] \{beamer\}
You can also mix predefined colors:

```
{\color{green!40!yellow} This text is of what color?}
```

which sets the text $40 \%$ green and $60 \%$ yellow.
There are commands for defining colors and color sets, as well as for coloring the background, frames, and hyperlinks (see Uwe Kern, Extending LATEX's color facilities: the xcolor package [36]).

Here is a simple illustration:
\% babybeamer9 presentation
\documentclass\{beamer\}
\begin\{document\} }
\setbeamercolor\{normal text\}\{bg=yellow!15\}
\begin\{frame\} }
\frametitle\{Colors\}

```
\begin{columns}[t]
 \begin{column}{2in}
```

```
{\color{red}Is it true that there is no new result
on the Congruence Lattice Characterization Problem?}
 \end{column}
 \begin{column}{2in}
{\color{green}F. Wehrung found a distributive
algebraic lattice that cannot be represented
as the congruence lattice of a lattice.}
 \end{column}
\end{columns}
\end{frame}
\setbeamercolor{normal text}{bg=green!15}
\begin{frame}
\frametitle{Colors fading out}
We introduce our guests:
\begin{itemize}
\item {\color{red}R. Padmanabhan}
\item {\color{red!60!white}Brian Davey}
\item {\color{red!40!white}Harry Lakser}
\item {\color{red!20!white}Dick Koch}
\end{itemize}
\end{frame}
\end{document}
The command
```

```
\setbeamercolor{normal text}{bg=yellow!15}
```

```
\setbeamercolor{normal text}{bg=yellow!15}
```

sets the background color to light ( $15 \%$ ) yellow. In the first column, the text is red, in the second, green. Set the foreground with $f g=$.

The background of the second frame is light green. The four participants are in lighter and lighter shades of red.

Figure 14.11 shows the frames of the babybeamer9 presentation-unfortunately, not in color.

### 14.3 The structure of a presentation

The structure of your presentation is, by and large, determined by the sectioning commands: \section and \subsection. For a very long lecture there may also be \part commands. The argument of any of these commands may have a short version for the navigational side bar (see Section 14.1.4).

The sectioning commands used in a beamer presentation look the same as they do for articles and books, but they play a different role. They do not display a section


Figure 14.11: babybeamer9 presentation.
title, but they add an entry to the table of contents. They also act as place markers in the sense that if you click on the title of a section in a navigation bar, then you will jump to the frame following the section command.

## Rule ■ Sectioning commands

1. Sectioning commands can only be placed between frames.
2. There must be a frame following the last sectioning command.
3. For a long (sub)section title, use $\backslash$ breakhere to break a line.
4. The optional short versions are for the navigation bar.
These are illustrated with beamerstructure1, see Figure 14.12. The line


Figure 14.12: beamerstructure 1 presentation, pages 3 and 5.
causes the table of contents to appear a line at a time. This command may also be used without an option or only with one, pausesections.

The second page shown in Figure 14.12 is the table of contents. The page is about half filled with only five listed items, so no more than 10 sections and subsections would fit. There should be fewer.

```
% beamerstructure1 presentation
\documentclass{beamer}
\usetheme{Berkeley}
\begin{document}
```

\begin\{frame\} }
\frametitle\{Outline\}
\tableofcontents[pausesections, pausesubsections]
\end\{frame\} }

```
\section[Sec1]{Section 1}
\begin{frame}
\frametitle{Section 1}
Text of Section 1
\end{frame}
\subsection[Sec1 Subsec1]{Section 1 -- Subsection 1}
\begin{frame}
\frametitle{Section 1\\Subsection 1}
Text of Section 1, Subsection 1
\end{frame}
\subsection[Sec1 Subsec2]{Section 1 -- Subsection 2}
\begin{frame}
\frametitle{Section 1\\Subsection 2}
Text of Section 1, Subsection 2
\end{frame}
\subsection[Sec1 Subsec3]{Section 1 -- Subsection 3}
\begin{frame}
\frametitle{Section 1\\Subsection 3}
Text of Section 1, Subsection 3
\end{frame}
\section[Sec2]{Section 2}
\begin{frame}
\frametitle{Section 2}
Text of Section 2
\end{frame}
\end{document}
```


### 14.3.1 Longer presentations

Longer presentations may need parts and a more complicated table of contents. I will not discuss these topics, but the presentation beamerstructure2 (in the samples folder) illustrates the use of parts and some other features. I added some comments to point these out. See Figure 14.13 for two sample pages of this presentation.

Sectionally complemented chopped lattices

George Grätzer ${ }^{1}$ Harry Lakser ${ }^{1}$ Michael Roddy ${ }^{2}$
${ }^{1}$ University of Manitoba
${ }^{2}$ Brandon University
Conference on Lattice Theory, 2006


Chopped lattices

Ideals and congruences

Figure 14.13: beamerstructure2 presentation, pages 1 and 10 .

### 14.3.2 Navigation symbols

The more structure you have in a presentation, the more you may appreciate the navigation icons shown by default on each page in the last line on the right. The icons are:
        - the slide
        - the frame
        - the section
        - the presentation icons
each surrounded by a left and a right arrow
        - the appendix
        - the back and forward icons (circular arrows)
        - the search icon (a magnifying glass)

If you decide not to have them, as in the presentation beamerstructure2, then give the following command in the preamble:
\setbeamertemplate\{navigation symbols\}\{\}

### 14.4 Notes

You can place notes in your presentation to remind yourself of what you want to say in addition to what is being projected. A note is placed in the presentation as the argument of the \note command, as in

```
\note{This is really difficult to compute.}
```

By default, notes are not shown in the presentation. If you invoke beamer with
\documentclass[notes=show] \{beamer\}
then the notes pages are included. The command
\documentclass[notes=show, trans] \{beamer\}
produces transparencies with notes, and
\documentclass[notes=only] \{beamer\}
produces only the note pages, one note page for every overlay of a frame with a note. To avoid this, print the output of
\documentclass[trans, notes=only] \{beamer\}
In addition to these examples, all the notes placed in a single frame are collected together on one note page. And a note between frames becomes a page on its own.
beamer does an excellent job of producing notes pages, for example, see Figure 14.14. In the upper-left corner, it displays precisely where we are in the structure of the presentation. The upper-right corner shows a small picture of the page to which the notes are attached.


Figure 14.14: A note page.

### 14.5 Themes

If you look carefully at Figures 14.1, 14.2, and 14.13 (even better, if you look at the PDF files of these presentations), you see how every little detail of the presentation is provided by beamer. Figures 14.1 and 14.2 show a presentation style dominated by a dark blue headline and left sidebar, a complete navigation bar in the left sidebar, the name of the author(s) and the title repeated in every overlay, section numbers in colored squares, and so on.

The presentation in Figure 14.13 has no sidebars, section numbers are in colored circles, the navigation elements are in the headline.

The display of lists and theorems (and other similar elements of a presentation) also vary a great deal.

You can achieve such detailed control over your presentation by defining all these elements yourself. beamer places dozens of commands at your disposal to make this possible. Or you can use a presentation theme that will do the job for you.

The command to name a presentation theme is \usetheme\{\}. The presentation beamerstructure2 uses the theme Warsaw (see Figure 14.13), so following the document class line type the command
\usetheme\{Warsaw\}
quickbeamer1 uses the theme Berkeley (see Figures 14.1 and 14.2) and so does beamerstructure1 (see Figure 14.12).

The presentation themes are in the theme subfolder of the themes folder of beamer. As of this writing, there are 26 of them, named after cities:

## Presentation Themes

Without Navigation Bars default, Bergen, Boadilla, Madrid, AnnArbor, CambridgeUS, Pittsburgh, Rochester

With a Navigation Bar Antibes, JuanLesPins, Montpellier

With a table of contents Sidebar Berkeley, PaloAlto, Goettingen, Marburg, Hannover

With Mini Frame Navigation Berlin, Ilmenau, Dresden, Darmstadt, Frankfurt, Singapore, Szeged

With Section and Subsection Table Copenhagen, Luebeck, Malmoe, Warsaw
How do you choose a presentation theme? After the presentation is finished, try out the various themes. Ask yourself:
        - Do sidebars take too much room away from my illustrations?
        - Do stronger colors add to the presentation or do they distract?
        - Do I want to use a navigation bar?

Answering these questions will narrow your choice.
The presentation theme defines all the colors, but you can alter them with the command \usecolortheme\{\}. You have a choice of albatross, beetle, crane, fly, and seagull.

For instance,
\usetheme\{Warsaw\}
\usecolortheme\{seagull\}
is a gray version of the Warsaw theme, appropriate for printing in black-and-white. In addition, you can further modify the "inner elements", such as blocks, with
\usecolortheme\{lily\}
or orchid, or rose. You can modify the "outer elements", such as headlines and sidebars, with
\usecolortheme\{whale\}
or seahorse, or dolphin. So you can have, for instance,
\usetheme\{Warsaw\}
\usecolortheme\{lily\}
\usecolortheme\{whale\}
This gives you 45 "out of the box" color schemes.
Similarly, font themes can also be specified, modifying the presentation theme, with the command \usefonttheme\{\}. You have the default and the following options:

```
professionalfonts
structurebold
structureitalicserif
structuresmallcapserif.
```


### 14.6 Planning your presentation

Step 1 As a rule, your presentation is based on one or more of your articles. Collect them in one folder. Resolve naming conventions as necessary. There should be only one Fig1!

Step 2 Rewrite the article(s) to sketch out your presentation. The pages correspond to frames. A page should not have too many words, say, no more than 40. Replace your numbered theorems with named theorems. Never reference another page. Have few sections and subsections. Add a table of contents, which is a readable overview of the new article.

Step 3 Base the new presentation on a presentation in the samples folder, a sample presentation in beamer's solution folder, or on one of your own or of a colleague's older presentations. Turn the pages into frames.

Step 4 Design your frames and add frame titles. Completely disregard what we wrote in Section 4.3.2 (the idea behind $L^{A} T_{E} X$ is that you should concentrate on what you have to say and let LATEX take care of the visual design). The new principle is: You are completely responsible for the visual appearance of every frame and overlay.

This is, of course, in addition to brevity and readability. Do not let ETEX break your lines. Do it with the $\backslash \backslash$ command and keep words that belong together on the same line.

Step 5 Write notes to remind yourself what you want to say in your lecture that is not on the slides. Print the notes for your lecture.

Step 6 Build in flexibility. For instance, if you have four examples to illustrate a definition, put each one on a different frame or overlay, and add a link to each that skips the rest of the examples. Depending on your audience's understanding, show an example or two, and skip the rest. The same way, you may skip proof ideas and even topics.

Step 7 Prepare for the worst-the computer system may fail, but projectors seldom do-so print a set of transparencies for your lecture as a backup by invoking the option trans of the documentclass
\documentclass[trans] \{beamer\}
To print a handout, use the handout option
\documentclass [handout] \{beamer\}
Open the presentation in Acrobat Reader. In Printer/Page Setup . . . set landscape and $140 \%$ magnification. In the Print dialogue box in Layout choose two pages per sheet and print-assuming, of course, that you have a printer offering these options.

### 14.7 What did I leave out?

Since the beamer reference manual is over 200 pages long, it is clear that this chapter covers maybe $10 \%$ of $i$.

For most presentations, you won't even need most of what I have included. If you read Sections 14.1, 14.2.1 and maybe Section 14.3, you should have enough for most math presentations.

If you are in other fields, or if you are more ambitious, you may need more. For example, a computer scientist will want program listings in a verbatim environment. This is easy. Start your frame with

```
\begin{frame}{fragile}
```

and then you can use the verbatim environment.
If you want to include sounds or movies in your presentation, consult Till Tantau, User's Guide to the Beamer Class [59].

You can do very simple animation with what we have covered here. This is illustrated with the babybeamer10 presentation (in the samples folder).

```
% babybeamer10 presentation
\documentclass{beamer}
\begin{document}
\begin{frame}
\includegraphics<1>{basem3-1}
\includegraphics<2>{basem3-2}
\includegraphics<3>{basem3-3}
\includegraphics<4>{basem3-4}
\end{frame}
\end{document}
```

The congruence generated by the dashed red line, see Figure 14.15, spreads in three steps, illustrating an interesting result. The animation is quite effective and instructive.

If you want to place such changing pictures lower in a frame, put them in the overprint environment.

I would recommend that you read Section 5 of Till Tantau, User's Guide, which has many good pointers about creating presentations.


Figure 14.15: The four pictures of babybeamer 10.

# Customizing $L^{A} T_{E} X$ 

In Section D.1.2, we discuss that Donald E. Knuth designed $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ as a platform on which convenient work environments could be built. One such work environment, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, predominates today, and it is indeed convenient.

Nevertheless, ETEX is designed for all of us, so it is not surprising that we could improve on it for our personal use. There are many reasons to customize IATEX:

Goal 1 to enhance the readability of the source file
Goal 2 to make notational and terminological changes easier
Goal 3 to redefine names used by ${ }^{A} T_{E} X$
Goal 4 to introduce consistent layouts
There are many techniques to accomplish these.
Technique 1 Define commands and environments in order to enhance $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to meet your particular needs (see Sections 15.1, 15.1.6, and 15.2).

Technique 2 Utilize delimited commands to write $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ documents in a more readable fashion (see Section 15.1.8).

Technique 3 Collect your frequently used commands into a command file (see Section 15.3).

Technique 4 Manipulate counters, integers-for instance, equation numbers and section numbers-and length commands, distance measurements-the \voffset command is an example (see Section 15.5).

Technique 5 Create customized list environments with the list environment (see Section 15.6).

Of course, there are many more reasons to customize and many more techniques to employ. We cover them in detail in this chapter.

We dedicate the last section to the pitfalls of customization (see Section 15.7). While the benefits of customization are great, there are many practices to avoid.

### 15.1 User-defined commands

${ }^{\mathrm{LA}} \mathrm{E} \mathrm{E}$ provides hundreds of commands. Chances are good, however, that you still have specific needs that are not directly addressed by these commands. By judiciously adding user-defined commands (or macros) you can make your work more productive.

User-defined commands follow the same rules as regular $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ commands (see Section 5.3.1).

### 15.1.1 Examples and rules

## Commands to enhance readability

Let us start with a few examples of user-defined commands as shorthand for longer command(s) or text in order to enhance readability of the source file (Goal 1).

1. If you use the \leftarrow command a lot, you could define
\newcommand\{\larr\}\{\leftarrow\}
Then you would only have to type \larr to obtain a left arrow.
2. Instead of
\widetilde\{a\}
you could simply type \wtilda after defining
\newcommand\{\wtilda\}\{\widetilde\{a\}\}
I show you how to define a generalized version of such a command in Section 15.1.2.
3. If you want to suppress the ligature in iff (see Section 5.4.6), you would normally have to type
if \textcompwordmark f
By defining a command \Iff,
\newcommand\{\Iff\}\{if\textcompwordmark f\}
you can type \Iff to get iff. We name this command \Iff because \iff is the symbol $\Longleftrightarrow$ (see Section B.4).
4. If you use the construct $D^{[2]} \times D^{[3]}$ often, you could introduce the $\backslash \mathrm{DxD}$ ( $D$ times $D)$ command,
\newcommand $\{\backslash \operatorname{DxD}\}\left\{D^{\wedge}\{[2]\} \backslash\right.$ times $\left.D^{\wedge}\{[3]\}\right\}$
and then type $\backslash D x D$ instead of the longer, and hard to read, version throughout your document-serves also Goal 2.
5. If you want to get a backslash in typewriter style, you would normally have to type (see Section 5.4.4)
\texttt\{\symbol\{92\}\}
Instead, you can introduce the $\backslash \mathrm{bsl}$ command,
\newcommand\{\bsl\}\{\texttt\{\symbol\{92\}\}\}
and \bsl typesets as $\backslash$.
6. You can also use commands as a shorthand for text. For instance, if you use the phrase subdirectly irreducible many times in your document, you could define
\newcommand\{\subdirr\}\{subdirectly irreducible\}
\subdirr is now shorthand for subdirectly irreducible, which typesets as subdirectly irreducible.
Tip With modern editors, the need to have user-defined commands as shorthand is reduced. Most editors have "command completion" or "phrase completion". For instance, in TeXShop, type the first few letters of a word and hit the escape key. The remaining letters are entered to match the first entry in the completion dictionary. Hitting escape again cycles through all possible completions. To make this feature useful, you have to customize the completion dictionary.

## Rule ■ User-defined commands

1. Issue the \newcommand command.
2. In braces, type the name of your new command, for example, \subdirr, including the backslash ( $\backslash$ ).
3. In a second pair of braces, define the command, in this example, subdirectly irreducible.
4. Use the command as $\backslash_{\text {subdirr }} \_{\sqcup}$ or $\backslash_{\text {subdirr }}\{ \}$ before a space, before an alphabetical character as \subdirr\{\}, and \subdirr otherwise.
Examples for Rule 4. For subdirectly irreducible lattice type \subdirr\{\} lattice or \subdirr\ lattice and not \subdirr lattice. Indeed, typesetting \subdirr lattice results in subdirectly irreduciblelattice. By the first spacing rule, \subdirr $\sqcup$ lattice is not any better (see Section 5.2.1). If you want subdirectly irreducibles, you must use the \subdirr\{\} form. Indeed, \subdirr\{\}s typesets as subdirectly irreducibles.

## Using new commands

It is good practice to place user-defined commands in the preamble of your document or in a command (style) file you load with a ction15.3)—providedthatyoudonotsubmittoajournalthatdoesnotallowthis.Thenyoualwaysknowwheretolookforthecommanddefinitions.Anexceptionisauser-definedcommandthatyouwanttorestricttoapartofthedocument.Delimitthesegmentwithbracesanddefinetheuser-definedcommandwithinthosebraces(seeSection5.3.2).Insteadofapairofbraces,youcanuse\begingroupand\endgroup,whichiseasiertosee.Section15.2.5recommendsyetanotherapproach.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
        - If errors occur, isolate the problem. Comment out the user-defined commands and reintroduce them one at a time.
        - ${ }^{\text {ATEXX }}$ I takes are found only when the command is used.

For instance, if you define a command with a spelling error
\newcommand\{\bfA\}\{\textf\{A\}\}
then at the first use of $\backslash \mathrm{bf} \mathrm{A}$ you get the error message
! Undefined control sequence.
\bfA ->\textf
\{A\}
Note that $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ is not complaining about $\backslash \mathrm{bfA}$ but about the misspelled $\backslash$ textbf command in the definition of $\backslash \mathrm{bfA}$.

Be careful not to define a user-defined command with a name that is already in use. If you do, you get an error message such as

```
! LaTeX Error: Command \larr already defined.
```

To correct the error, replace the command name with a new one. On the other hand, if you need to replace an existing command, you have to redefine it. See Section 15.1.5 for how to do so.

Tip Use spaces to make your source files more readable, but avoid them in definitions.

For example, you may type

```
$D^{ \langle 2 \rangle } + 2 = x^{ \mathbf{a} }$
```

This may help you see how the braces match, easily identify relations and operations, and so on. Do not add these spaces in command definitions because it may result in unwanted spaces in your typeset document. You may start a new line to increase the readability of a command definition, provided that you terminate the previous line with \%. For instance, borrowing an example from page 372:
\newcommand\{\Xquotphi\}[2] \{\%
\dfrac\{\varphi \cdot X_\{n, \#1\}\}\%
\{\varphi_\{\#2\}\times \varepsilon_\{\#1\}\}\}

Tip In the definition of a new command, command declarations need an extra pair of braces (see Section 5.3.3).

Say you want to define a command that typesets the warning: Do not redefine this variable! It is very easy to make the following mistake:
\newcommand\{\Warn\}\{\em Do not redefine this variable!\}
\Warn typesets the warning emphasized, but everything that follows the warning is also emphasized (more precisely, until the end of the \Warn command's scope). Indeed, $\backslash$ Warn is replaced by \em Do not redefine this variable! so the effect of \em goes beyond the sentence to the next closing brace.

The correct definition is
\newcommand\{\Warn\}\{\{\em Do not redefine this variable!\}\}
Even simpler, you could use a command with an argument
\newcommand\{\Warn\}\{\emph\{Do not redefine this variable!\}\}

## The xspace package

Rule 4 (on page 366) is the source of many annoying problems in ETEX. David Carlisle's xspace package (see Section 12.3.1) helps eliminate such problems. In the preamble, load the package with
defineacommandthatmayhavesuchproblems,addthe\xspacecommandtothedefinition.Forinstance,define\subdirras\newcommand\{\subdirr\}\{subdirectlyirreducible\xspace\}Thenallthefollowingtypesetssubdirectlyirreduciblelatticecorrectly:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
\subdirr\\sqcuplattice
\subdirr{}\sqcuplattice
\subdirr_lattice
```

Note that \xspace does not add space if followed by a punctuation mark, so to get

## $\Gamma$

    the lattice is subdirectly irreducible.
    type
the lattice is \subdirr.

Tip Be careful not to use \xspace twice in a definition.

For instance, if you define
\newcommand\{ $\backslash$ tex $\}\{\backslash T e X \backslash x s p a c e\}$
\newcommand\{\bibtex\}\{\textsc\{Bib\}\kern-.1em\tex\xspace\}\% Bad!!!
then
\bibtex, followed by a comma
typesets as

```
\Gamma
 BIBTEX , followed by a comma
L
```

The correct definitions are
\newcommand\{\tex\}\{\TeX\xspace\}
\newcommand\{\bibtex\}\{\textsc\{Bib\}\kern-. 1em\TeX\xspace\}\% Correct!

Of course, if you want to get $\mathrm{T}_{\mathrm{E}}$ Xbook, you cannot use $\backslash$ xspace variant definition: \tex.

## Ensuring math

The \ensuremath command is useful for defining commands that work in both text and math mode. Suppose you want to define a command for $D^{\langle 2\rangle}$. If you define it as

```
\newcommand{\Dsq}{D^{\langle2\rangle}}
```

then you can use the command in math mode, but not in text mode. If you define it as

```
\newcommand{\Dsq}{$D^{\langle2\rangle}$}
```

then it works in text mode, but not in math mode. Instead, define this command as

```
\newcommand{\Dsq}{\ensuremath{D^{\langle2\rangle}}}
```

Then \Dsq works correctly in both contexts.
This example also shows the editorial advantages of user-defined commands. Suppose the referee suggests that you change the notation to $D^{[2]}$. To carry out the change you only have to change one line:
\newcommand\{\Dsq\}\{\ensuremath\{D^\{[2] $\}\}\}$
It is hard to overemphasize the importance of this example. You may want to change notation because:
        - you found a better notation;
        - your coauthor insists;
        - your article appears in a conference proceedings, and the editor wants to unify the notation;
        - you are reusing the code from this article in another one or in a book, where the notation is different.

See also the discussion of the \TextOrMath command on page 311.

### 15.1.2 Arguments

Arguments of user-defined commands work the same way as for ETTEX commands (see page 69). Define
\newcommand $\{\backslash \mathrm{fsqAB}\}\left\{\left(\mathrm{f}^{\wedge} 2\right) \wedge\left\{\left[\left[\backslash \mathrm{frac}\left\{\mathrm{A}^{\wedge} 2\right\}\{\mathrm{B}-1\}\right]\right]\right\}\right\}$
Then \fsqAB typesets as $\left(f^{2}\right)^{\left[\left[\frac{A^{2}}{B-1}\right]\right]}$ in a math formula. If you want to use $\backslash f s q A B$ in math and also by itself in text, define it with \ensuremath, as

```
\newcommand{\fsqAB}{\ensuremath{(f^2)^
 {[[\frac{A^2}{B-1}]]}}}
```

However, if you use this construct for many functions $f$, then you may need a generalized command, such as
\newcommand\{\sqAB\}[1]\{\ensuremath\{(\#1^2)^ $\left\{\left[\left[\backslash\right.\right.\right.$ frac $\left.\left.\left.\left.\left.\left\{A^{\wedge} 2\right\}\{B-1\}\right]\right]\right\}\right\}\right\}$
Now $\backslash \mathrm{sqAB}\{\mathrm{g}\}$ typesets $\left(g^{2}\right)^{\left[\left[\frac{A^{2}}{B-1}\right]\right]}$. The form of this $\backslash$ newcommand is the same as before, except that after the name of the command in braces, $\{\backslash \mathrm{sqAB}\}$, we specify the number of arguments in brackets (in this example, [1]). Then we can use \#1 in the definition of the command. When the command is invoked, the argument you provide replaces $\# 1$ in the definition. Typing $\$ \backslash$ sqAB $\{q\} \$$ results in the formula $\left(q^{2}\right)^{\left[\left[\frac{A^{2}}{B-1}\right]\right]}$, while $\$ \backslash$ sqAB $\{r\} \$$ gives $\left(r^{2}\right)^{\left[\left[\frac{A^{2}}{B-1}\right]\right]}$.

Notice how these examples disrupt the normal spacing between lines-a practice to avoid!

A user-defined command may have up to nine arguments, numbered 1-9.
The simplest examples just allow you to invoke an existing command under a new name. For instance, the \eqref command introduced in Section 7.3 to reference equations (the equation number upright, enclosed in parentheses), would also be useful to reference items for the user-defined list environment enumeratei introduced in Section 15.2.1-see Example 3. Indeed, for the enumeratei environment, we want references to items to be typeset upright, enclosed in parentheses. So if the first item has label First, we could reference it with \eqref\{First\}, which typesets as (i). But \eqref \{First\} seems awkward and inappropriate; we are referencing an item not an equation.

So define
\newcommand\{- ref\}[1]\{\eqref\{\#1\}\}
and now we can reference the first item with
- ref \{First\}, which typesets as (i).
Following are some simple examples of user-defined commands with arguments.


1. In the preamble of the source file for this book, I defined
\newcommand\{\env\}[1]\{\textnormal\{\texttt\{\#1\}\}\}
In this example, the \env command is used to typeset environment names. So the environment name center is typed as
\env\{center\}
Again the editorial advantage is obvious. If the editor wants the environment names set in sans serif, only one line in the book has to be changed to alter every occurrence of a typeset environment name:
\newcommand\{\env\}[1]\{\textsf\{\#1\}\}
2. An argument (e.g., \#1) may occur more than once in a definition. A natural example is provided by the \index command (see Section 17.1). Typically, if you wanted to include a phrase, say subdirectly irreducible lattice, in your index, you would have to type

```
this proves that L is a subdirectly irreducible
```

lattice\index\{subdirectly irreducible lattice\}

You could instead define an "index it" command such as
\newcommand\{\indexit\}[1]\{\#1\index\{\#1\}\}
The argument of this command is a phrase to be both typeset and included in the index. Using this command, you can type

```
this proves that L is a
\indexit{subdirectly irreducible lattice}
```

If you want all such index entries to be typeset in italics, then \indexit should be defined as
\newcommand\{\indexit\}[1]\{\#1\index\{\#1@\textit\{\#1\}\}\}
in which \#1 occurs three times. (See Chapter 17 for more information about index commands.)
3. Let us define a command with three arguments for congruences:
\newcommand\{\congr\} [3] \{\#1\equiv\#2\pod\{\#3\}\}
Now type $\$ \backslash \operatorname{congr}\{\mathrm{a}\}\{\mathrm{b}\}\{\backslash$ theta $\} \$$ to typeset $a \equiv b(\theta)$. In Section 15.1.8, I present another command for typesetting congruences.
4. In the sampart.tex article (see Section 11.3), there are a lot of vectors with only one nonzero entry:

$$
\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle
$$

the $i$ above the $d$ indicates that it is the $i$ th component of the vector. A command
\vectsup, a vector with a superscript, producing this symbol can be defined as
\newcommand\{\vectsup\}[2]\{\langle\dots, 0 , \dots, \overset\{\#1\}\{\#2\}, \dots, 0, \dots\rangle\}
\vectsup $\{i\}\{d\}$ in a math formula now produces $\langle\ldots, 0, \ldots, \stackrel{i}{d}, \ldots, 0, \ldots\rangle$.
5. Formula 20 of the Formula Gallery (Section 7.9),

$$
\mathbf{A}=\left(\begin{array}{ccccc}
\frac{\varphi \cdot X_{n, 1}}{\varphi_{1} \times \varepsilon_{1}} & \left(x+\varepsilon_{2}\right)^{2} & \cdots & \left(x+\varepsilon_{n-1}\right)^{n-1} & \left(x+\varepsilon_{n}\right)^{n} \\
\varphi \cdot X_{n, 1} & \frac{\varphi \cdot X_{n, 2}}{\varphi_{2} \times \varepsilon_{2}} & \cdots & \left(x+\varepsilon_{n-1}\right)^{n-1} & \left(x+\varepsilon_{n}\right)^{n} \\
\frac{\varphi}{\varphi_{2}} \times \varepsilon_{1} & \ldots \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & \ldots \ldots \ldots & \ldots \ldots X_{n} \\
\frac{\varphi \cdot X_{n, 1}}{\varphi_{n} \times \varepsilon_{1}} & \frac{\varphi \cdot X_{n, 2}}{\varphi_{n} \times \varepsilon_{2}} & \cdots & \frac{\varphi \cdot X_{n, n-1}}{\varphi_{n} \times \varepsilon_{n-1}} & \frac{\varphi \cdot X_{n, n}}{\varphi_{n} \times \varepsilon_{n}}
\end{array}\right)+\mathbf{I}_{n}
$$

is a good candidate for user-defined commands. By defining
\newcommand\{\Xquotphi\} [2] \{\%
\dfrac\{\varphi \cdot X_\{n, \#1\}\}\%
\{\varphi_\{\#2\}\times \varepsilon_\{\#1\}\}\}
\newcommand\{\exn\}[1]\{(x+\varepsilon_\{\#1\}) ^\{\#1\}\}
the two new commands,

$$
\Xquotphi\{2\}\{3\} \qquad \exn\{n\}
$$

are typeset as

$$
\frac{\varphi \cdot X_{n, 2}}{\varphi_{3} \times \varepsilon_{2}} \quad\left(x+\varepsilon_{n}\right)^{n}
$$

With these user-defined commands, you can rewrite Formula 20 as follows:

```
\[
 \mathbf{A} =
 \begin{pmatrix}
 \Xquotphi{1}{1} & \exn{2} & \cdots & \exn{n - 1}
 & \exn{n}\\\[10pt]
 \Xquotphi{1}{2} & \Xquotphi{2}{2} & \cdots
 & \exn{n - 1} &\exn{n}\\\
 \hdotsfor{5}\\\
 \Xquotphi{1}{n} & \Xquotphi{2}{n} & \cdots &
 \Xquotphi{n - 1}{n} & \Xquotphi{n}{n}
 \end{pmatrix}
 + \mathbf{I}_{n}
```


## \]

Observe how much shorter this form is than the version shown in the Formula Gallery and how much easier it is to read. It is also easier to reuse in a subsequent article.

### 15.1.3 Short arguments

There are three ways of defining new commands:
\newcommand }[1]\{\{\large\bfseries\#1\}\}
makes its argument large and bold. So
\bigbold\{First paragraph.

Second paragraph.
\}
prints
$\Gamma$
First paragraph.
Second paragraph.
as expected. On the other hand, if you define

```
\newcommand*{\bigbold}[1]{{\large\bfseries#1}}
```

and then attempt to typeset the previous example, you get the error message

```
! Paragraph ended before \bigbold was complete.
<to be read again>
```

$\backslash p a r$

Short commands are often preferable because of their improved error checking.

### 15.1.4 Optional arguments

You can define a command whose first argument is optional, and provide a default value for this optional argument. To illustrate, let us define the command
\newcommand\{\SimpleSum\}\{a_\{1\}+a_\{2\}+\dots+a_\{n\}\}
$\$ \backslash$ SimpleSum $\$$ now produces $a_{1}+a_{2}+\cdots+a_{n}$. Now we change this command so that we can sum from 1 to $m$ if necessary, with $n$ as the default:
\newcommand\{\BetterSum\}[1][n]\{a_\{1\}+a_\{2\}+\dots+a_\{\#1\}\}
$\$ \backslash$ BetterSum $\$$ still produces $a_{1}+a_{2}+\cdots+a_{n}$, but $\$ \backslash$ BetterSum [m] $\$$ typesets as $a_{1}+a_{2}+\cdots+a_{m}$.

A \newcommand may have up to nine arguments, but only the first may be optional. The following command has two arguments, one optional:
\newcommand\{\BestSum\}[2][n]\{\#2_\{1\}+\#2_\{2\}+\dots+\#2_\{\#1\}\}
Now

$$
\begin{array}{lll}
\$ \backslash \text { BestSum }\{\mathrm{a}\} \$ & \text { typesets as } & a_{1}+a_{2}+\cdots+a_{n} \\
\$ \backslash \text { BestSum }\{\mathrm{b}\} \$ & \text { typesets as } & b_{1}+b_{2}+\cdots+b_{n} \\
\$ \backslash \text { BestSum }[\mathrm{m}]\{\mathrm{c}\} \$ & \text { typesets as } & c_{1}+c_{2}+\cdots+c_{m}
\end{array}
$$

### 15.1.5 Redefining commands

LATEX makes sure that you do not inadvertently define a new command with the same name as an existing command (see, for example, page 367). Assuming that you have already defined the \larr command as in Section 15.1.1 (to typeset $\leftarrow$ ), to redefine \larr, use \{\Longleftarrow\}
and now $\backslash$ larr typesets as $\Longleftarrow$.

Tip Use the }_{\mathrm{E}} \mathrm{X}\) commands may cause ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ to behave in unexpected ways, or even crash.

Blind redefinition is the route to madness.

See also the discussion in Section 15.7.
You can also use }_{\mathrm{E}} \mathrm{X}\) or any package. For instance, the end of proof symbol, \qedsymbol, used by the proof environment, can be changed to the solid black square some people prefer (defined in the amssymb package) with the command
\{\$\blacksquare\$\}
Even better, define
\{\ensuremath\{\blacksquare\}\}
so that you can use \qedsymbol in both text and math mode. Section 15.1.6 has more on redefining names.
}\{\makebox[3em]\{\hrulefill\}\thinspace\}
If you want to use the $\backslash$ bysame command in your bibliography and include this definition in your document, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ generates an error message when you typeset your document using a document class that already defines \bysame (all AMS document classes do). However, if you define \bysame in your document using \providecommand:

```
\providecommand{\bysame}%
{\makebox[3em]{\hrulefill}\thinspace}
```

the $\backslash$ bysame command typesets correctly whether or not the document class defines it.

### 15.1.6 Redefining names

A number of names, such as Table, List of Tables, Abstract, and so on, are typeset in your document by ${ }^{A} T_{E} X$. You can easily change these names.

For instance, if you are preparing your manuscript for the proceedings of a meeting, and Abstract has to be changed to Summary, you can do so with

```
\renewcommand{\abstractname}{Summary}
```

Table 15.1 lists the commands that define such names in various document classes, along with their default definitions and the major document classes using the commands. It is easy to check whether your document class defines such a command, simply open the appropriate cls file and search for the command.

If your document has photographs rather than figures, you could redefine

```
\renewcommand{\figurename}{Photograph}
\renewcommand{\listfigurename}{List of Photographs}
```

Command	Default Value	Defined by Document Class
\abstractname	Abstract	aa, ab, ap, a, p, r
\appendixname	Appendix	aa, ab, ap, a, b, r
$\backslash$ bibname	Bibliography	$\mathrm{ab}, \mathrm{b}, \mathrm{r}$
\ccname	Cc	1
\chaptername	Chapter	$\mathrm{ab}, \mathrm{b}, \mathrm{r}$
\contentsname	Contents	aa, ab, ap, a, b, r
$\backslash$ datename	Date	aa, ab, ap
\enclname	Enclosure	1
$\backslash$ figurename	Figure	aa, ab, ap, a, b, r
\headtoname	To	1
\indexname	Index	aa, ab, ap, a, b, r
\keywordsname	Key words and phrases	aa, ab, ap
\listfigurename	List of Figures	aa, ab, ap, a, b, r
$\backslash \mathrm{listtablename}$	List of Tables	aa, ab, ap, a, b, r
$\backslash$ pagename	Page	1, p
\partname	Part	aa, ab, ap, a, b, r
\proofname	Proof	aa, ab, ap
$\backslash$ refname	References	aa, ap, a
$\backslash$ see	see	aa, ab, ap
\seealso	see also	aa, ab, ap
$\backslash$ \subjclassname	1991 Mathematics Subject Classification	aa, ab, ap
\subjclassname[2000]	2000 Mathematics   Subject   Classification	aa, ab, ap
\tablename	Table	aa, ab, ap, a, b, r

Document class codes: aa amsart, ab amsbook, ap amsproc, a article, b book, 1 letter, p proc, and r report

Table 15.1: Redefinable name commands in ${ }^{{ }^{2} T} \mathrm{E} X$.

### 15.1.7 Showing the definitions of commands

If you are defining a new command with \newcommand and an error message informs you that the command name is already in use, then it may be useful to find out the existing definition of the command. For instance, the \vects command is defined in sampartu.tex (in the samples folder and in Section 15.4). If you called this new command \vec, you would get the error message
! LaTeX Error: Command \vec already defined.

You can find out the definition of the \vec command by getting into interactive mode (see Section D.4) and typing

```
*\show \vec
```

LATEX responds with
> \vec=macro:
->\mathaccent "017E .
<*> \show \vec
informing you that $\backslash \mathrm{vec}$ is a command, and, specifically, a math accent (see Sections 7.7 and B.8). Now try \hangafter (see Section 5.7.2):

```
*\show \hangafter
```

> \hangafter=\hangafter.
<*> \show \hangafter

The response indicates that $\backslash$ hangafter is a primitive, defined by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ itself. Redefining a primitive is not a good idea.

Try one more command, \medskip (see Section 5.8.2), to find out how large it is:
*\show \medskip
> \medskip=macro:
->\vspace \medskipamount .
The third line indicates that the length is stored in \medskipamount. If we use \show to ask what $\backslash$ medskipamount is defined to be:

```
*\show \medskipamount
> \medskipamount=\skip14.
```

we do not get a very useful answer. \medskipamount is unlike most of the commands you have seen so far. It is a length command (see Section 15.5.2), containing the value of \medskip. You can ask for the value of a length command (or parameter) with the \showthe command:
*\showthe \medskipamount
> 6.0pt plus 2.0pt minus 2.0pt.
So \medskip is a vertical space of 6 points that can stretch or shrink by up to 2 points. LATEX has many registers that contain numbers:
        - counters containing integers, such as 3
        - dimensions such as 10.2 pt . For example, \textwidth (see Section 10.6)
        - lengths, written in the form 6.0 pt plus 2.0 pt minus 2.0 pt , also called a glue or a rubber length (see Sections 15.5.2 and D.3.2)

Use the \showthe command to display the value for any of these registers.
You can also type the \show and \showthe commands directly into your document rather than go into interactive mode. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ 's response appears in the log window, and is saved into the log file.

### 15.1.8 Delimited commands

You can define new commands in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ using characters and symbols to delimit arguments. Such delimited commands provide a way to write more readable source documents.

First we have to learn how to define a command using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 's $\backslash$ def command. Type \def, followed by the new command name (not in braces), then the definition in braces. For example, the first command defined in Section 15.1.1,
\newcommand\{\larr\}\{\leftarrow\}
could be typed
$\backslash$ def $\backslash \operatorname{larr}\{\backslash$ leftarrow $\}$
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 's $\backslash$ def command does not check whether a new command name is already in use, so \def behaves differently from the LATEX's \newcommand, 

Tip It is your responsibility to ensure that your command name is unique when you define a command using \def. $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ provides no protection. Use the techniques introduced in Section 15.1.7 to check a name before you define a command with \def.

Now we can start discussing delimited commands with a simple example, defining a command for vectors:

```
\def\vect<#1>{\langle#1\rangle}
```

Note that \vect is a command with one argument, \#1. When invoked, it typesets $\langle$, the argument, and then $\rangle$.

In the definition of \vect, the argument \#1 is delimited by < and >. When the command is invoked, the argument must be delimited the same way. So to typeset the vector $\langle a, b\rangle$, we invoke \vect with
\vect<a,b>

This looks somewhat like a vector, and the name \vect serves as a reminder.
You have to be careful with delimited commands because the math spacing rules (see Section 7.2) do not hold in either the definition or the invocation. So if there is a space before \#1, in the definition of \vect,
\def\vect<ப\#1>\{\langle\#1\rangle\}
then $\$ \backslash$ vect<a, $\mathrm{b}>\$$ results in the error message

```
! Use of \vect doesn't match its definition.
1.12 $\vect<a
 ,b>$
```

which is clear enough. If the space is on the other side of the \#1, as in
\def \vect<\#1 >\{\langle\#1\rangle\}
the error message is slightly more confusing:

```
Runaway argument?
a,b>$
! Paragraph ended before \vect was complete.
<to be read again>
 \par
```

The moral is that if you use delimited commands, you must be very careful that each invocation exactly matches the definition.

In Example 3 of Section 15.1.2, we introduced a command with three arguments for typing congruences:
\newcommand\{\congr\}[3] \{\#1\equiv\#2\pod\{\#3\}\}
$\$ \backslash \operatorname{congr}\{\mathrm{a}\}\{\mathrm{b}\}\{\backslash$ theta\} $\$$ produces $a \equiv b(\theta)$. This command is easy to remember, but it does not make the source file more readable. For that, we use a delimited command.

Let us redo the congruence example with a delimited command

```
\def\congr#1=#2(#3){#1\equiv#2\pod{#3}}
```

so that $\$ \backslash$ congr $\mathrm{a}=\mathrm{b}(\backslash$ theta) $\$$ produces $a \equiv b(\theta)$. In the source document, the formula \congr $\mathrm{a}=\mathrm{b}$ ( $\backslash$ theta) looks a bit like the typeset congruence and it is easier to read. I included this definition in the newlattice.sty command file (see Section 15.3).

There is only one catch. Suppose you want to typeset the formula

$$
x=a \equiv b \quad(\theta)
$$

If you type $\$ \backslash$ congr $\mathrm{x}=\mathrm{a}=\mathrm{b}\left(\backslash\right.$ theta) $\$$, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ typesets it as $x \equiv a=b(\theta)$. Indeed, x is delimited on the right by the first $=$, so $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ believes that the first argument is x .

The second argument is delimited by the first = and the left parenthesis, so it is $\mathrm{a}=\mathrm{b}$. In such cases, you can help ITEX $^{\text {T }}$ find the correct first argument by enclosing it in braces:
\$ $\backslash$ congr $\{\mathrm{x}=\mathrm{a}\}=\mathrm{b}(\backslash$ theta $)$ \$
Here is our final example. In Section 5.3.1 we discuss the problem of typing a command such as $\backslash T e \mathrm{X}$ (the example there was $\backslash$ today) in the form $\backslash T e \mathrm{X} \_{\sqcup}$ so that it is typeset as a separate word. The problem is that if you type $\backslash \mathrm{TeX}$ without the trailing $\_{\sqcup}, \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is merged with the next word, and there is no error message to warn you. One solution is to use a delimited command:
$\backslash \operatorname{def} \backslash t e x /\{\backslash T e X\}$
Now to get $T_{E} X$, type $\backslash t e x /$. If a space is needed after it, type $\backslash t e x / \sqcup$. If you forget the closing /, you get an error message.

A better solution to this problem is the use of the xspace package-provided you do not want to typeset something like $\mathrm{T}_{\mathrm{E}} X b o o k$ (see Section 15.1.1). However, many documents use the delimited construct (including the AMS documentation), so you should be familiar with it.

### 15.2 User-defined environments

Most user-defined commands are new commands. User-defined environments, as a rule, are built on existing environments. We start with such user-defined environments (Section 15.2.1) and then proceed to investigate
        - arguments (Section 15.2.2)
        - optional arguments (Section 15.2.3)
        - short arguments (Section 15.2.4)

Finally, we discuss how to define brand-new environments (Section 15.2.5).

### 15.2.1 Modifying existing environments

If you do not like the name of the proof environment and would prefer to use the name demo, define
\newenvironment\{demo\}
\{\begin\{proof\}\} }
\{\end\{proof\}\} }
Note that this does not change how the environment is typeset, only the way it is invoked.

To modify an existing environment, oldenv, type

```
\newenvironment{name}
 {begin_text}
 {end_text}
```

where begin_text contains the command \begin\{oldenv\} and end_text contains } the command \end\{oldenv\}. }

Tip Do not give a new environment the name of an existing command or environment.

For instance, if you define
\newenvironment\{parbox\}
\{...\}
\{...\}
you get the error message
! LaTeX Error: Command \parbox already defined.
If there is an error in such a user-defined environment, the message generated refers to the environment that was modified, not to your environment. For instance, if you misspell proof as prof when you define
\newenvironment\{demo\}
\{\begin\{prof\}\} }
\{\end\{proof\}\} }
then at the first use of the demo environment you get the message
! LaTeX Error: Environment prof undefined.
1.13 \begin\{demo\} }

If you define

```
\newenvironment{demo}
```

$\{\backslash$ begin\{proof $\} \backslash$ em $\}$
\{\end\{prof\}\} }
at the first use of demo you get the message

```
! LaTeX Error: \begin{proof} on input line 5
 ended by \end{prof}.
 1.14 \end{demo}
```

Here are four more examples of modified environments.

1. The command
\newenvironment\{demo\}
$\{\backslash$ begin\{proof\}\em\}
\{\end\{proof\}\} }
defines a demo environment that typesets an emphasized proof. Note that the scope of $\backslash \mathrm{em}$ is the demo environment.
2. The following example defines a very useful environment. It takes an argument to be typeset as the name of a theorem:
```
\newtheorem*{namedtheorem}{\theoremname}
\newcommand{\theoremname}{testing}
\newenvironment{named}[1]{
 \renewcommand{\theoremname}{#1}
 \begin{namedtheorem}}
 {\end{namedtheorem}}
```

For example,
\begin\{named\}\{Name of the theorem\} }
Body of theorem.
\end\{named\} }
produces
Name of the theorem. Body of theorem.
in the style appropriate for the \newtheorem* declaration. This type of environment is often used to produce an unnumbered Main Theorem (see Section 15.4) or when typesetting an article or book in which the theorem numbering is already fixed, for instance, when publishing a book in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ that was originally typeset by another typesetting system.
3. In Sections 6.2.4 and 12.3.1, we came across the enumerate package, which allows you to customize the enumerate environment. If the enumerate package is loaded, you can invoke the enumerate environment with an optional argument specifying how the counter should be typeset, for instance, with the option [\upshape (i)],

```
\begin{enumerate}[\upshape (i)]
 \item First item\label{First}
\end{enumerate}
items are numbered (i), (ii), and so on.
```

So now we define

```
\newenvironment{enumeratei}{\begin{enumerate}%
 [\upshape (i)]}%
 {\end{enumerate}}
```

and we can invoke the new environment with (see Sections 15.3 and 15.4)

```
\begin{enumeratei}
 \item \label{ }
\end{enumeratei}
```

Reference items in the enumeratei environment with the - ref command introduced in Section 15.1.2.
4. If you want to define an environment for displaying text that is numbered as an equation, you might try


```
\newenvironment{texteqn}
 {\begin{equation} \begin{minipage}{0.9\linewidth}}
 {\end{minipage} \end{equation}}
```

But there is a problem. If you use this environment in the middle of a paragraph, an interword space appears at the beginning of the first line after the environment. To remove this unwanted space, use the \ignorespacesafterend command, as in

```
\newenvironment{texteqn}
 {\begin{equation} \begin{minipage}{0.9\linewidth}}
 {\end{minipage} \end{equation} \ignorespacesafterend}
```

Examples 2 and 3 are included in the newlattice.sty command file (see Section 15.3). See the sample article, sampartu.tex in Section 15.4, for some instances of their use.

See Section 15.6.3 for custom lists as user-defined environments.
Redefine an existing environment with the \renewenvironment command. It is similar to the 

There are some environments you cannot redefine; for instance, verbatim and all the AMS multiline math environments.

### 15.2.2 Arguments

An environment defined by the \newenvironment command can take arguments (see Example 2 in Section 15.2.1), but they can only be used in the begin_text argument of the \newenvironment command. Here is a simple example. Define a theorem proclamation in the preamble (see Section 6.4), and then define a theorem that can be referenced:

```
\newenvironment{theoremRef} [1]
 {\begin{theorem}\label{T:#1}}
 {\end{theorem}}
```

This is invoked with
\begin\{theoremRef\}\{label\} }

The theoremRef environment is a modified environment. It is a theorem that can be referenced (with the \ref and \pageref commands, of course) and it invokes the theorem environment when it defines $\mathrm{T}: l a b e l$ to be the label for cross-referencing.

### 15.2.3 Optional arguments with default values

The first argument of an environment created with the \newenvironment command may be an optional argument with a default value. For example,
\newenvironment\{narrow\} [1] [3in]
$\{\backslash$ noindent $\backslash$ begin\{minipage $\}\{\# 1\}\}$
\{\end\{minipage\}\} }
creates a narrow environment. By default, it sets the body of the environment in a 3-inch wide box, with no indentation. So

```
\begin{narrow} This text was typeset in a \texttt{narrow}
 environment, in a 3-inch wide box, with no indentation.
\end{narrow}
```

typesets as

This text was typeset in a narrow environment, in a 3 -inch wide box, with no indentation.

You can also give an optional argument to specify the width. For example, \begin\{narrow\}[3.5in] }

This text was typeset in a \texttt\{narrow\} environment, in a 3 -inch wide box, with no indentation.
\end\{narrow\} }
which produces the following false statement:

This text was typeset in a narrow environment, in a 3 -inch wide box, with no indentation.

### 15.2.4 Short contents

We have discussed two commands that define new environments,
\newenvironment and \renewenvironment
These commands allow you to define environments whose contents (begin_text and end_text ; see page 381) can include any number of paragraphs. The $*$-ed versions of these commands define short environments whose contents cannot contain a paragraph break (a blank line or a \par command).

### 15.2.5 Brand-new environments

Some user-defined environments are not modifications of existing environments. Here are two examples:

1. A command remains effective only within its scope (see Section 5.3.2). Now suppose that you want to make a change, say redefining a counter, for only a few paragraphs. You could simply place braces around these paragraphs, but they are hard to see. So define
```
\newenvironment{exception}
```

    \{\relax\}
    \{\relax\}
    and then

```
\begin{exception}
 new commands
 body
\end{exception}
```

The environment stands out better than a pair of braces, reminding you later about the special circumstances. The \relax command does nothing, but it is customary to include a $\backslash r e l a x$ command in such a definition to make it more readable.
2. In this example, we define a new environment that centers its body vertically on a new page:

```
\newenvironment{vcenterpage}
 {\newpage\vspace*{\fill}}
 {\vspace*{\fill}\par\pagebreak}
```

For \vspace, see Section 5.8.2 and for \fill, see the last subsection in Section 15.5.

### 15.3 A custom command file

User-defined commands, of course, are a matter of individual need and taste. I have collected some commands for writing papers in lattice theory in the newlattice.sty file, which you can find in the samples folder (see page 4). I hope that this model helps you to develop a command file of your own. Please remember that everything we discuss in this section is a reflection of $m y$ work habits. Many experts disagree with one or another aspect of the way I define the commands, so take whatever suits your needs. And keep in mind the dangers of customization discussed in Section 15.7.

Tip Some journals do not permit the submission of a separate custom command file. For such journals, just copy the needed user-defined commands into the preamble of the article.

This file is named newlattice.sty. It can be loaded with e.Thishasanumberofadvantages.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Your command names should be mnemonic. If you cannot easily remember a command's name, rename it. The implication here is that your command file should not be very large unless you have an unusual ability to recall abbreviations.

Here are the first few lines of the newlattice.sty command file:

```
% newlattice.sty
% New command file for lattice papers
\NeedsTeXFormat{LaTeX2e}[2005/12/01]
\ProvidesPackage{newlattice}[2006/03/15 v1.2
 New commands for lattices]
\RequirePackage{amsmath}
\RequirePackage{amssymb}
\RequirePackage{latexsym}
\RequirePackage[mathscr] {eucal}
\RequirePackage{verbatim}
\RequirePackage{enumerate}
\RequirePackage{xspace}
```

The line
\NeedsTeXFormat\{LaTeX2e\}[2005/12/01]
gives an error message if a document loading the newlattice package is typeset with LeTEX 2.09 or with an older version of the standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. The next line provides information that is written in your log file.

The next seven lines declare what packages are required. If some of these packages have not yet been loaded, then the missing packages are loaded. A package loaded
with \RequirePackage is not read in again.
Being able to specify the packages we need is one of the great advantages of command files. When I write a document, the packages are there if I need them.

You may want some justification for the inclusion of two of these packages in this list. The verbatim package is on the list so that I can use the comment environment to comment out large blocks of text (see Section 5.5.1), which is useful for finding errors and typesetting only parts of a longer document-but do not forget to remove your comments before submission. The enumerate package is on the list because the enumeratei and enumeratea environments, defined in newlattice.sty, require it.

If you start your article with
entclass\{amsart\}\usepackage\{newlattice\}thenthe\listfilescommand(seeSectionD.3.4)producesthefollowinglistwhenyourdocumentistypeset:undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

```
File List
 amsart.cls 2004/08/06 v2.20
 amsmath.sty 2000/07/18 v2.13 AMS math features
 amstext.sty 2000/06/29 v2.01
 amsgen.sty 1999/11/30 v2.0
 amsbsy.sty 1999/11/29 v1.2d
 amsopn.sty 1999/12/14 v2.01 operator names
 umsa.fd 2002/01/19 v2.2g AMS font definitions
amsfonts.sty 2001/10/25 v2.2f
newlattice.sty 2006/03/15 New commands for lattices v1.2
 amssymb.sty 2002/01/22 v2.2d
enumerate.sty 1999/03/05 v3.00 enumerate
 extensions (DPC)
graphicx.sty 1999/02/16 v1.Of Enhanced LaTeX
 Graphics (DPC,SPQR)
 keyval.sty 1999/03/16 v1.13 key=value
 parser (DPC)
 trig.sty 1999/03/16 v1.09 sin cos tan (DPC)
graphics.cfg 2005/02/03 v1.3 graphics configuration
 of teTeX/TeXLive
 pdftex.def 2002/06/19 v0.03k graphics/color
 for pdftex
 umsa.fd 2002/01/19 v2.2g AMS font definitions
 umsb.fd 2002/01/19 v2.2g AMS font definitions
 ueuf.fd 2002/01/19 v2.2g AMS font definitions
```

Now we continue with newlattice.sty. After the introductory section dealing with $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ and the packages, we define some commands for writing about lattices and sets:
\% Lattice operations
\newcommand\{\jj\}\{\vee\}\% join
\newcommand\{\mm\}\{\wedge\}\% meet
\newcommand\{\JJ\}\{\bigvee\}\% big join
\newcommand\{\MM\}\{\bigwedge\}\% big meet
\newcommand\{\JJm\}[2]\{\JJ(\,\#1\mid\#2\,)\}\% big join with a middle
\newcommand\{\MMm\}[2]\{\MM( \,\#1\mid\#2\,)\}\% big meet with a middle
\% Set operations
\newcommand\{\uu\}\{\cup\}\% union
\newcommand\{\ii\}\{<br>cap\}\% intersection
\newcommand\{\UU\}\{\bigcup\}\% big union
\newcommand\{\II\}\{\bigcap\}\% big intersection
\newcommand\{\UUm\}[2]\{\UU(\,\#1\mid\#2\,)\}\% big union with a middle \newcommand\{\IIm\}[2]\{\II(\,\#1\mid\#2\, )\}
\% big intersection with a middle

> \% Sets
> \newcommand\{\contd\}\{\subseteq\}\% contained in
> $\backslash$ newcommand $\{\backslash$ ncontd\} $\{\backslash$ nsubseteq\} $\%$ not $\backslash$ contd
> \newcommand\{\scontd\}\{\subset\}\% strictly contained in
> \newcommand\{\contg\}\{\supseteq\}\% containing with equality
> \newcommand\{\ncontg\}\{\nsupseteq\}\% not \contg
> \newcommand\{\nin\}\{\notin\}\% not \in
> \newcommand\{\empset\}\{\varnothing\}\% the empty set
> \newcommand\{\set\}[1]\{<br>{\#1<br>}\}\% set
> \newcommand\{\setm\}[2]\{<br>{\,\#1\mid\#2\,<br>}\}\% set with a middle
> \def\vect<\#1>\{\langle\#1\rangle\}\% vector

So $\$ \mathrm{a} \backslash \mathrm{jj} \mathrm{b} \$$ produces $a \vee b$ and $\$ \mathrm{~A} \backslash$ contd $\mathrm{B} \$$ produces $A \subseteq B$, and so on. The original commands are not redefined, so if a coauthor prefers $\$ \mathrm{a}$ \vee $\mathrm{b} \$$ to \$a \jj b\$, the \vee command is available.

The commands with a "middle" are exemplified by \setm:
$\$ \backslash \operatorname{setm}\{\mathrm{x}$ \in $R\}\left\{\mathrm{x}^{\wedge} 2\right.$ \leq 2$\} \$$
typesets as $\left\{x \in R \mid x^{2} \leq 2\right\}$.
Using the \set command, we can type the set $\{a, b\}$ as $\$ \backslash \operatorname{set}\{\mathrm{a}, \mathrm{b}\} \$$, which is easier to read than $\$ \backslash\{\mathrm{a}, \mathrm{b} \backslash\} \$$. Similarly, we type $\$ \backslash$ vect $<\mathrm{a}, \mathrm{b}\rangle \$$ for the vector $\langle a, b\rangle$,
so it looks like a vector.
Next in newlattice.sty I map the Greek letters to easy to remember commands. For some, I prefer to use the variants, but that is a matter of individual taste. It is also a matter of taste whether or not to change the commands for the Greek letters at all, and how far one should go in changing commonly used commands.

```
% Greek letters
\newcommand{\Gra}{\alpha}
\newcommand{\Grb}{\beta}
\newcommand{\Grc}{\chi}
\newcommand{\Grd}{\delta}
\renewcommand{\Gre}{\varepsilon}
\newcommand{\Grf}{\varphi}
\renewcommand{\Grg}{\gamma}
\newcommand{\Grh}{\eta}
\newcommand{\Gri}{\iota}
\newcommand{\Grk}{\kappa}
\newcommand{\Grl}{\lambda}
\newcommand{\Grm}{\mu}
\newcommand{\Grn}{\nu}
\newcommand{\Gro}{\omega}
\newcommand{\Grp}{\pi}
\newcommand{\Grq}{0}
\newcommand{\Grr}{\varrho}
\newcommand{\Grs}{\sigma}
\newcommand{\Grt}{\tau}
\newcommand{\Gru}{\upsilon}
\newcommand{\Grv}{\vartheta}
\newcommand{\Grx}{\xi}
\newcommand{\Gry}{\psi}
\newcommand{\Grz}{\zeta}
\newcommand{\GrG}{\Gamma}
\newcommand{\GrD}{\Delta}
\newcommand{\GrF}{\Phi}
\newcommand{\GrL}{\Lambda}
\newcommand{\Gr0}{\Omega}
\newcommand{\GrP}{\Pi}
\newcommand{\GrQ}{\Theta}
\newcommand{\GrS}{\Sigma}
\newcommand{\GrU}{\Upsilon}
\newcommand{\GrX}{\Xi}
\newcommand{\GrY}{\\Psi}
```

I also introduce some new names for text font commands by abbreviating text to $t$ (so that $\backslash t e x t b f$ becomes $\backslash t b f$ ) and for math font commands by abbreviating math to m (so that $\backslash$ mathbf becomes $\backslash \mathrm{mbf}$ ).

> \% Font commands
\newcommand\{\tbf\}\{\textbf\}\% text bold
\newcommand\{\tit\}\{\textit\}\% text italic
\newcommand\{\tsl\}\{\textsl\}\% text slanted
\newcommand $\{\backslash t s c\}\{\backslash$ textsc\} $\%$ text small cap \newcommand\{\ttt\}\{\texttt\}\% text typewriter \newcommand\{\trm\}\{\textrm\}\% text roman \newcommand\{\tsf\}\{\textsf\}\% text sans serif \newcommand\{\tup\}\{\textup\}\% text upright \newcommand\{\mbf\}\{\mathbf\}\% math bold \providecommand\{\mit\}\{\mathit\}\% math italic \newcommand $\backslash \backslash \mathrm{msf}\}\{\backslash$ mathsf $\} \%$ math sans serif \newcommand\{\mrm\}\{\mathrm\}\% math roman \newcommand\{\mtt\}\{\mathtt\}\% math typewriter

The math alphabets are invoked as commands with arguments: \Bold for bold, \Cal for calligraphic, \DD for blackboard bold (double), and $\backslash$ Frak for fraktur (German Gothic) (see Section 8.3.2). Notice that $\backslash \mathrm{Cal}$ and $\backslash$ Euler are different because of the option mathscr of the eucal package (see Section 8.3.1).

```
\newcommand{\Bold}[1]{\boldsymbol{#1}}
 % Bold math symbol, use as \Bold{\alpha}
\newcommand{\Cal}[1]{\mathcal{#1}}
 % Calligraphics - only caps, use as \Cal{A}
\newcommand{\DD}[1]{\mathbb{#1}}
 % Doubled - blackboard bold - only caps, use as \DD{A}
\newcommand{\Euler}[1]{\mathscr{#1}}
 % Euler Script - only caps, use as \Euler{A}
\newcommand{\Frak}[1]{\mathfrak{#1}}% Fraktur, use as \Frak{a}
```

$\backslash$ Bold\{A\} typesets bold italic A, A; to get upright bold, use \mathbf \{A\}, which typesets as $\mathbf{A}$. Here are some commands of importance in lattice theory:

## \% Constructs

\DeclareMathOperator\{\Id\}\{Id\}
$\backslash$ DeclareMathOperator $\{\backslash$ Fil $\}\{$ Fil $\}$
\DeclareMathOperator\{\Con\}\{Con\}
\DeclareMathOperator\{\Aut\}\{Aut\}
\DeclareMathOperator\{\Sub\}\{Sub\}

```
\DeclareMathOperator\{\Pow\}\{Pow\}
\DeclareMathOperator\{\Part\}\{Part\}
\DeclareMathOperator\{\Ker\}\{Ker\}
\newcommand\{\Ji\}[1]\{\tup\{J\}(\#1)\} \%join irreducible
\newcommand\{\Mi\}[1]\{\tup\{M\}(\#1)\} \%meet irreducible
\% Generated by
\newcommand\{\con\}[1]\{\tup\{con\} (\#1) \}
\newcommand\{\sub\}[1]\{\tup\{sub\} (\#1) \}
\newcommand\{\id\}[1]\{\tup\{id\}(\#1)\}
\newcommand\{\fil\}[1]\{\tup\{f\{\}il\}(\#1)\}
\newcommand\{\Downg\}\{\downarrow \(\backslash!\} \%\) down-set generated by
```

Here are a few more commands and environments:
\% Miscellaneous
\newcommand\{\newl\}\{\newline\}
\newcommand\{\overl\}[1]\{\overline\{\#1\}\}
\newcommand\{\underl\}[1]\{\underline\{\#1\}\}
\providecommand\{ \bysame\}\{\makebox[3em]\%
\{\hrulefill\}\thinspace\}
\newcommand\{\iso\}\{\cong\}\% isomorphic
\def \congr\#1=\#2(\#3) \{\#1\equiv\#2\pod\{\#3\}\}
\%congruence, use it as \congr a=b(\theta)\%
\newcommand\{- ref\}[1]\{\eqref\{\#1\}\}
\newenvironment \{enumeratei\}\{\begin\{enumerate\}\% }
[\upshape (i)]\}\{\end\{enumerate\}\} }
\%produces (i), (ii), etc. Reference with
- ref
\newenvironment \{enumeratea\}\{\begin\{enumerate\}\% }
[\upshape (a)]\}\{\end\{enumerate\}\} }
\%produces (a), (b), etc. Reference with
- ref
\theoremstyle\{plain\}
\newtheorem*\{namedtheorem\}\{\theoremname\}
\newcommand\{\theoremname\}\{testing\}
\newenvironment \{named\}[1]\{\renewcommand\{\theoremname\}\{\#1\}
\begin\{namedtheorem\}\} }
\{\end\{namedtheorem\}\} }
\%use it as \begin\{named\}\{Name of theorem\} }
\%Body of theorem \end\{named\} }
\endinput
For the \congr command see Section 15.1.8. The enumeratei and named environments are discussed in Section 15.2.1. The enumeratea environment is similar.


This command file, like all command files, is terminated with the \endinput command. In Section 18.3.2, we discuss the same rule for files that are \include-d.

My newlattice.sty evolves with time. I keep a copy in the folder of every article I write. This way, even years later, with the command file much changed, I can typeset the article with no problem.

The $\backslash$ TextOrMath command (see Section 12.3) is very useful for command files. For instance, we can use it to define our Greek letters, such as
\newcommand\{\Gra\}\{\TextOrMath\{\$\alpha\$\}\{\alpha\}\}
Then we can use $\backslash$ Gra both in text and math to produce $\alpha$.
Read the discussion in Sections A.1.6 and A.2.6 where to put your custom command file.

### 15.4 The sample article with user-defined commands

In this section, we look at the sampartu.tex sample article (also in the samples folder), which is a rewrite of the sampart.tex sample article (see Section 11.3 and the samples folder) utilizing the user-defined commands collected in the command file newlattice.sty (see Section 15.3 and the samples folder).

```
% Sample file: sampartu.tex
% The sample article
% with user-defined commands and environments
\documentclass{amsart}
\usepackage{newlattice}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\theoremstyle{remark}
\newtheorem*{notation}{Notation}
\numberwithin{equation}{section}
\newcommand{\Prodm}[2]{\GrP(\,#1\mid#2\,)}
 % product with a middle
```

\newcommand\{\Prodsm\}[2]\{\GrP^\{*\}(\,\#1\mid\#2\, )\}
\% product * with a middle
\newcommand\{\vectsup\} [2] \{\vect<\dots,0, \dots, \%
\overset\{\#1\}\{\#2\}, \dots,0, \dots>\}\% special vector
\newcommand\{\Dsq\}\{D^\{\langle2\rangle\}\}
\begin\{document\} }

\title[Complete-simple distributive lattices] $\{A$ construction of complete-simple<br> distributive lattices\}

\author\{George~A. Menuhin\}
\address\{Computer Science Department<br>
University of Winnebago<br>
Winnebago, Minnesota 23714\}

\email\{menuhin@ccw.uwinnebago.edu\}
\urladdr\{http://math.uwinnebago.edu/homepages/menuhin/\}
\thanks\{Research supported by the NSF under grant number~23466.\}
\keywords\{Complete lattice, distributive lattice, complete congruence, congruence lattice\}
\subjclass[2000] \{Primary: 06B10; Secondary: 06D05\}
\date\{March 15, 2006\}
\begin\{abstract\} }
In this note we prove that there exist \emph\{complete-simple distributive lattices,\} that is, complete distributive lattices in which there are only two complete congruences.
\end\{abstract\} }
\maketitle

\section\{Introduction\}\label\{S:intro\}

In this note we prove the following result:
\begin\{named\}\{Main Theorem\} }
There exists an infinite complete distributive lattice \$K\$ with only the two trivial complete congruence relations.
\end\{named\} }

\section\{The \$\Dsq\$ construction\}\label\{S:Ds\}

For the basic notation in lattice theory
and universal algebra, see Ferenc ${ }^{\sim} R$.
Richardson ${ }^{\sim} \backslash c i t e\{f R 82\}$ and George~A. Menuhin~ $\backslash c i t e\{g M 68\}$.

We start with some definitions:

```
\begin{definition}\label{D:prime}
 Let V be a complete lattice, and let
 $\Frak{p} = [u, v]$ be an interval of V. Then
 \Frak{p} is called \emph{complete-prime} if the
 following three conditions are satisfied:
 \begin{enumeratei}
 \item u is meet-irreducible but u is \emph{not}
 completely meet-irreducible;\label{m-i}
 \item v is join-irreducible but v is \emph{not}
 completely join-irreducible;\label{j-i}
 \item $[u, v]$ is a complete-simple lattice.\label{c-s}
 \end{enumeratei}
\end{definition}
```

Now we prove the following result:
\begin\{lemma\}\label\{L:Dsq\} }
Let $\$ \mathrm{D} \$$ be a complete distributive lattice satisfying
conditions - ref\{m-i\} and~
- ref\{j-i\}.
    Then \(\$ \backslash D s q \$\) is a sublattice of \(\$ D^{\wedge}\{2\} \$\); hence \(\$ \backslash D s q \$\)
    is a lattice, and \(\$ \backslash \mathrm{Dsq} \$\) is a complete distributive
    lattice satisfying conditions
- ref\{m-i\} and~
- ref\{j-i\}.
\end\{lemma\} }
\begin\{proof\} }
By conditions \({ }^{\sim}\) itemref\{m-i\} and
- ref\{j-i\}, \(\$ \backslash \mathrm{Dsq} \$\) is a sublattice of \(\$ D^{\wedge}\{2\} \$\). Hence, \(\$ \backslash D s q \$\) is a lattice.


Since $\$ \backslash \mathrm{Dsq}$ \$ is a sublattice of a distributive lattice, $\$ \backslash \mathrm{Dsq}$ \$ is a distributive lattice. Using the characterization of standard ideals in Ernest ${ }^{\sim}$ T. Moynahan~\cite\{eM57\}, \$\Dsq\$ has a zero and a unit element, namely, \$\vect<0, 0>\$ and \$\vect<1, 1>\$. To show that \$\Dsq\$
 $\$ \mathrm{a}=\backslash \mathrm{JJ} \mathrm{A} \$$ in $\$ \mathrm{D}^{\wedge}\{2\}$. If $\$ \mathrm{a}$ \in $\backslash \mathrm{Dsq}$, then \$a = \JJ A\$ in \$\Dsq\$; otherwise, \$a\$ is of the form \$\vect<b, $1>\$$ for some $\$ \mathrm{~b}$ \in $D \$$ with $\$ \mathrm{~b}$ < $1 \$$. Now $\$ \backslash \mathrm{JJ}$ A $=$ \vect<1, $1>\$$ in $\$ \mathrm{D}^{\wedge}\{2\} \$$, and
the dual argument shows that $\$ \backslash M M A \$$ also exists in \$D^\{2\}\$. Hence \$D\$ is complete. Conditions - ref\{m-i\} and~ \({ }^{\sim}\) itemref\{j-i\} are obvious for \(\$ \backslash\) Dsq\$.
\end\{proof\} }
\begin\{corollary\}\label\{C:prime\} }
If \(\$ D \$\) is complete-prime, then so is \(\$ \backslash D s q \$\).
\end\{corollary\} }


The motivation for the following result comes from Soo-Key Foo~ \cite\{sF90\}.
\begin\{lemma\}\label\{L:ccr\} }
Let $\$ \backslash G r Q \$$ be a complete congruence relation of $\$ \backslash \mathrm{Dsq} \$$ such that
\begin\{equation\}\label\{E:rigid\} }
\congr \vect<1, d>=\vect<1, 1>(\GrQ), \end\{equation\} }
for some $\$ \mathrm{~d}$ \in D \$ with $\$ \mathrm{~d}<1 \$$. Then $\$ \backslash \mathrm{GrQ}=\backslash \mathrm{Gri}$.
\end\{lemma\} }
\begin\{proof\} }
Let $\$ \backslash G r Q \$$ be a complete congruence relation of $\$ \backslash \mathrm{Dsq}$ \$ satisfying - ref\{E:rigid\}. Then \(\$ \backslash \operatorname{GrQ}=\backslash\) Gri\$.
\end\{proof\} }

The following construction is crucial to our proof of the Main \({ }^{\sim}\) Theorem:


```
\begin{definition}\label{D:P*}
 Let D_{i}, for $i \in I$, be complete distributive
 lattices satisfying condition~\itemref{j-i}. Their
 \Grp^{*} product is defined as follows:
 \[
 \Prodsm{ D_{i} }{i \in I} =
 \Prodm{ D_{i}^{-} }{i \in I} + 1;
 \]
 that is, $\Prodsm{ D_{i} }{i \in I}$ is
 $\Prodm{D_{i}^{-}}{i \in I}$ with a new unit element.
\end{definition}
```

```
 \begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
 \vectsup{i}{d}
\]
is the element of $\Prodsm{ D_{i} }{i \in I}$ whose
i-th component is d and all the other
components are O.
\end{notation}
See also Ernest~T. Moynahan^\cite{eM57a}. Next we verify:
\begin{theorem}\label{T:P*}
 Let D_{i}, for $i \in I$, be complete distributive
 lattices satisfying condition~\itemref{j-i}. Let \GrQ
 be a complete congruence relation on
 $\Prodsm{ D_{i} }{i \in I}$. If there exist
 $i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such
 that for all $d \leq c < 1_{i}$,
 \begin{equation}\label{E:cong1}
 \congr\vectsup{i}{d}=\vectsup{i}{c}(\GrQ),
 \end{equation}
 then $\GrQ = \Gri$.
\end{theorem}
\begin{proof}
 Since
 \begin{equation}\label{E:cong2}
 \congr\vectsup{i}{d}=\vectsup{i}{c}(\GrQ),
 \end{equation}
 and \GrQ is a complete congruence relation, it
 follows from condition~\itemref{c-s} that
 \begin{equation}\label{E:cong}
 \begin{split}
 &\langle \dots, \overset{i}{d}, \dots, 0,
 \dots \rangle\\
 &\equiv \bigvee (\langle \dots, 0, \dots,
 \overset{i}{c},\dots, 0,\dots \rangle \mid d
 \leq c < 1) \equiv 1 \pmod{\Theta}.
 \end{split}
 \end{equation}
```

Let $\$ \mathrm{j}$ \in $I \$$, for $\$ \mathrm{j}$ \neq $\mathrm{i} \$$, and let \$a\in $D_{-}\{j\} へ\{-\} \$$. Meeting both sides of the congruence - ref\{E:cong\} with \$\vectsup\{j\}\{a\}\$, we obtain \(\backslash\) begin\{equation\} \(\backslash\) label \(\{\mathrm{E}:\) comp\}
\begin\{split\} }
0 \&= \vectsup\{i\}\{d\} \mm \vectsup\{j\}\{a\}\\ \(\& \backslash e q u i v ~ \ v e c t s u p\{j\}\{a\} \backslash \operatorname{pod}\{\backslash \operatorname{GrQ}\}\).
\end\{split\} }
\end\{equation\} }
Using the completeness of \(\$ \backslash G r Q \$\) and \(\backslash i t e m r e f\{E: c o m p\}\), we get:
\begin\{equation\}\label\{E: cong3\} }
\congr\{0=\JJm\{\vectsup\{j\}\{a\}\}\{ a \in D_\{j\}^\{-\} \}\} \(=\{1\}(\backslash G r Q)\),
\end\{equation\} }
hence \(\$ \backslash \mathrm{GrQ}=\backslash\) Gri\$.
\end\{proof\} }
\begin\{theorem\}\label\{T:P*a\} }
Let \$D_\{i\}\$, for \$i \in I\$, be complete distributive
lattices satisfying
conditions
- ref\{j-i\} and~ \({ }^{\sim}\) itemref\{c-s\}. Then
\$\Prodsm\{ D_\{i\} \}\{i \in I\}\$ also satisfies
conditions \({ }^{\sim}\)
- ref \(\{j\)-i\} and
- ref\{c-s\}.
\end\{theorem\} }
\begin\{proof\} }
Let \(\$ \backslash \mathrm{GrQ} \$\) be a complete congruence on
\$\Prodsm\{ D_\{i\} \}\{i \in I\}\$. Let \$i \in I\$. Define
\begin\{equation\}\label\{E:dihat\} }
\widehat\{D\}_\{i\} = \setm\{ \vectsup\{i\}\{d\} \}
\{ d \in \(\left.D_{-}\{i\} へ\{-\}\right\} \backslash u u \backslash \operatorname{set}\{1\}\).
\end\{equation\} }
Then \$\widehat\{D\}_\{i\}\$ is a complete sublattice of \(\$ \backslash \operatorname{Prodsm}\left\{D_{-}\{i\}\right\}\{i\) in \(I\} \$\), and \(\$ \backslash w i d e h a t\{D\} \_\{i\} \$\) is isomorphic to \$D_\{i\}\$. Let \$\GrQ_\{i\}\$ be the restriction of \(\$ \backslash G r Q \$\) to \(\$ \backslash\) widehat \(\{D\} \_\{i\} \$\). Since \$D_\{i\}\$ is complete-simple, so is \$\widehat\{D\}_\{i\}\$, hence \(\$ \backslash \mathrm{GrQ}\) _\{i\}\$ is \(\$ \backslash \mathrm{Gro} \mathrm{\$}\) or \(\$ \backslash \mathrm{Gri} \mathrm{\$}\). If \$\GrQ_\{i\}=\Gro\$, for all \$i\in I\$, then \(\$ \backslash \operatorname{GrQ}=\backslash G r o \$\). If there is an \(\$ \mathrm{i}\) in \(I \$\), such that \(\$ \backslash G r Q_{-}\{i\}=\backslash G r i \$\), then \(\$ \backslash c o n g r 0=1(\backslash G r Q) \$\), and hence \(\$ \backslash \operatorname{GrQ}=\backslash\) Gri\$.
\end\{proof\} }


```
The Main Theorem follows easily from Theorems~\ref{T:P*}
and \ref{T:P*a}.
\begin{thebibliography}{9}
\bibitem{sF90}
 Soo-Key Foo, \emph{Lattice Constructions},
 Ph.D. thesis, University of Winnebago,
 Winnebago, MN, December, 1990.
\bibitem{gM68}
 George ~A. Menuhin, \emph{Universal algebra}. D. ~Van
 Nostrand, Princeton, 1968.
\bibitem{eM57}
 Ernest~T. Moynahan,
 \emph{On a problem of M. Stone},
 Acta Math. Acad. Sci. Hungar. \tbf{8} (1957),
 455--460.
\bibitem{eM57a}
 \bysame, \emph{Ideals and congruence relations in
 lattices}.~II, Magyar Tud. Akad. Mat. Fiz. Oszt.
 K\"{o}zl. \tbf{9} (1957), 417--434 (Hungarian).
\bibitem{fR82}
 Ferenc~R. Richardson,
 \emph{General Lattice Theory}.
 Mir, Moscow, expanded and revised ed.,
 1982 (Russian).
\end{thebibliography}
\end{document}
```


### 15.5 Numbering and measuring

${ }^{\mathrm{L}} \mathrm{T} \mathrm{E}$ X stores integers in counters. For example, the section counter contains the current section number. Distance measurements are saved in length commands. For instance, the \textwidth command contains the width of the text. For this book, \textwidth is set to 345.0 points.

In this section, we take a closer look at counters and length commands.

### 15.5.1 Counters

Counters may be defined by $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$, by document classes, by packages, or by the user.

## Standard $L^{A} T_{E} X$ counters

LeTEX automatically generates numbers for equations, sections, theorems, and so on. Each such number is stored in a counter. Table 15.2 shows the standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ counters. Their names are more or less self-explanatory. In addition, for every proclamation name, there is a matching counter called name (see Section 6.4).

## Setting counters

The command for setting a counter's value is \setcounter. When ETEX generates a number, it first increments the appropriate counter, so if you want the next chapter to be numbered 3 , you should set the chapter counter to 2 by typing

```
\setcounter{chapter}{2}
```

before the \chapter command. The only exception to this rule is the page number, which is first used to number the current page, and then incremented. If you wanted to set the current page number to 63 , you would include the command
\setcounter\{page\}\{63\}
somewhere in the page.
${ }^{\mathrm{E}} \mathrm{TE}_{\mathrm{E}} \mathrm{X}$ initializes and increments its standard counters automatically. Sometimes you may want to manipulate them yourself. To typeset only chapter3.tex, the third chapter of your book, start with
\setcounter\{chapter\}\{2\}
\include\{chapter3\}
and when chapter3.tex is typeset, the chapter is properly numbered. You can also type
\setcounter\{page\}\{63\}

equation	part	enumi
figure	chapter	enumii
footnote	section	enumiii
mpfootnote	subsection	enumiv
page	subsubsection	
table	paragraph	
	subparagraph	

Table 15.2: Standard $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ counters.
if the first page of this chapter is supposed to be 63. Of course, the preferred way to typeset parts of a larger document is with the \includeonly command (see Section 18.3.2).

Tip If you need to manipulate counters, always look for solutions in which $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ does the work for you.

## Defining new counters

You can define your own counters. For example,
\newcounter\{mycounter\}
makes mycounter a new counter. In the definition, you can use an optional argument, the name of another counter:
\newcounter\{mycounter\} [basecounter]
which automatically resets mycounter to 0 if basecounter changes value. This command has the same form as the command $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ uses internally for tasks such as numbering theorems and subsections within sections.

## Rule ■ New counters

New counters should be defined in the preamble of the document. They should not be defined in a file read in with an \include command (see Section 18.3.2).

Let us suppose that you define a new counter, mycounter, in chapter5.tex, which is made part of your whole document with an \include command. When you typeset your document with \includeonly commands not including chapter5.tex, you get an error message, such as

```
! LaTeX Error: No counter 'mycounter' defined.
```


## Counter styles

The value of counter can be displayed in the typeset document with the command
\thecounter
If you want to change the counter's appearance when typeset, issue the command
\{new_style\}

Style	Command	Sample
Arabic	\arabic $\{$ counter\}	$1,2, \ldots$
Lowercase Roman	$\backslash$ roman\{counter\}	i, ii, ...
Uppercase Roman	$\backslash$ Roman $\{$ counter\}	I, II, ...
Lowercase Letters	$\backslash$ alph\{counter\}	a, b,., z
Uppercase Letters	$\backslash$ Alph\{counter\}	A, B, ..., Z

Table 15.3: Counter styles.
where new_style specifies the counter modified as shown in Table 15.3. The default style is arabic. For instance, if you give the command
\{\Alph\{theorem\}\}
then the theorems appear as Theorem A, Theorem B, ...
Here is a more complicated example for a book:
\{\arabic\{chapter\}\}
\{\thechapter-\arabic\{section\}\}
\%
\{\thechapter-\arabic\{section\}. \arabic\{subsection\}\}
With these definitions, Section 1 of Chapter 3 is numbered in the form 3-1 and Subsection 2 of Section 1 of Chapter 3 is numbered in the form 3-1.2.

The \pagenumbering command is a shorthand method for setting the page numbering in a given style. For instance, \pagenumbering\{roman\} numbers pages as i, ii, and so on.

The subequations environment (see Section 8.5) uses parentequation as the counter for the whole equation group and it uses equation as the counter for the subequations. To change the default format of the equation numbers from (2a), (2b), and so forth, to (2i), (2ii), and so on, type the following line inside the subequations environment
\%
$\{\backslash$ theparentequation $\backslash$ roman $\{$ equation $\}\}$
If you want equation numbers like (2.i), (2.ii), and so on, type

```
\renewcommand{\theequation}%
 {\theparentequation.\roman{equation}}
```


## Counter arithmetic

The \stepcounter\{counter\} command increments counter and sets all the counters that were defined with the optional argument counter to 0 . The variant
\refstepcounter\{counter\}
does the same, and also sets the value for the next $\backslash$ label command.
You can do some arithmetic with the command
\addtocounter\{counter\}\{n\}
where $n$ is an integer. For example,
\setcounter\{counter\}\{5\}
\addtocounter\{counter\}\{2\}
sets counter to 7 .
The value stored in a counter can be accessed using the \value command, which is mostly used with the \setcounter or \addtocounter commands. For instance, you can set counter to equal the value of another counter, oldcounter, by typing
\setcounter\{counter\}\{\value\{oldcounter\}\}
Here is a typical example of counter manipulation. You might want a theorem (invoked in a theorem environment) to be followed by several corollaries (each in a corollary environment) starting with Corollary 1. In other words, Theorem 1 should be followed by Corollary 1, Corollary 2, and so forth and so should Theorem 3. By default, $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ numbers the next corollary as Corollary 3, even if it follows another theorem. To tell $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to start numbering the corollaries from 1 again, issue the command
\setcounter\{corollary\}\{0\}
after each theorem. But such a process is error-prone, and goes against the spirit of $\mathrm{AT}_{\mathrm{E}} X$.

Instead, follow my advice on page 400, and let $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ do the work for you. In the preamble, type the proclamations
\newtheorem\{theorem\}\{Theorem\}
\newtheorem\{corollary\}\{Corollary\}[theorem]
We are almost there. Theorem 1 now is followed by Corollary 1.1, Corollary 1.2 and Theorem 3 by Corollary 3.1. If we redefine $\backslash$ thecorollary,
\{\arabic\{corollary\}\}
then Theorem 1 is followed by Corollary 1 and Corollary 2, and Theorem 3 is also
followed by Corollary 1.
If you need to perform more complicated arithmetic with counters, use Kresten K. Thorup and Frank Jensen's calc package (see Section 12.3.1). This package is discussed in Section A.3.1 of The $L^{A} T E^{X}$ Companion, 2nd edition [46].

## Two special counters

The secnumdepth and tocdepth counters control which sectional units are numbered and which are listed in the table of contents, respectively. For example,
\setcounter\{secnumdepth\} \{2\}
sets secnumdepth to 2 . As a result, chapters-if they are present in the document class-sections, and subsections are numbered, but subsubsections are not. This command must be placed in the preamble of the document. tocdepth is similar.

### 15.5.2 Length commands

While a counter contains integers, a length command contains a real number and a dimensional unit.

LATEX recognizes many different dimensional units. We list five absolute units:
        - cm centimeter
        - in inch
        - pc pica (1 pc = 12 pt )
        - pt point (1 in = 72.27 pt )
        - mm millimeter
and two relative units:
        - em, approximately the width of the letter M in the current font
        - ex, approximately the height of the letter x in the current font

LATEX defines many length commands. For instance, Section 4.1 of The $L^{A T} T_{E} X$ Companion, 2nd edition [46] lists 17 length commands for page layout alone. You can find some of them in Figure 10.4. A list environment sets about a dozen additional length commands (see Figure 15.2). Length commands are defined for almost every aspect of ETEX's work, including displayed math environments-a complete list would probably contain a few hundred. Many are listed in Leslie Lamport's $L^{4 T} E^{X}$ : A Document Preparation System, 2nd edition [43] and in The LATEX Companion, 2nd edition [46]. Many more are hidden in packages such as amsmath.

The most common length commands are:
        - \parindent, the amount of indentation at the beginning of a paragraph
        - \parskip, the extra vertical space inserted between paragraphs
        - \textwidth, the width of the text on a page

A more esoteric example is \marginparpush, the minimum vertical space between two marginal notes. Luckily, you do not have to be familiar with many length commands because $\mathrm{LATE}_{\mathrm{E}} \mathrm{X}$ and the document class set them for you.

## Defining new length commands

You can define your own length commands. For example,

## \newlength\{\mylength\}

makes $\backslash$ mylength a new length command with a value of 0 points. Note that while you have to type
\newcounter\{counter\}
to get a new counter, typing
\newlength\{mylength\}
results in an error message such as

```
! Missing control sequence inserted.
<inserted text>
 \inaccessible
1.3 \newlength{mylength}
```


## Setting length

The \setlength command sets or resets the value of a length command. So
\setlength\{\textwidth\}\{3in\}
creates a very narrow page. The first argument of \setlength must be a length command, not simply the command name, that is
\setlength\{textwidth\}\{3in\} \% Bad
is incorrect. The second argument of \setlength must be a real number with a dimensional unit, for instance, 3in, and not simply a real number. In other words,
\setlength\{\textwidth\}\{3\} \% Bad
is also incorrect.

Tip A common mistake is to type a command such as
\setlength $\{\backslash$ marginpar $\}\{0\}$
Instead, type
\setlength\{\marginpar\}\{0pt\}
Always be sure to include a dimensional unit.

The \addtolength command adds a quantity to the value of a length command. For instance,
\addtolength\{\textwidth\}\{-10pt\}
narrows the page width by 10 points.
If you define
\newlength\{\shorterlength\}
\setlength\{\shorterlength\}\{\mylength\}
\addtolength\{\shorterlength\}\{-. 5in\}
then \parbox\{\shorterlength\}\{. . .\} always typesets its second argument in a box $1 / 2$ inch narrower than the parboxes set to be of width $\backslash$ mylength.

When ETTEX typesets some text or math, it creates a box. Three measurements are used to describe the size of the box:
        - the width
        - the height, from the baseline to the top
        - the depth, from the baseline to the bottom
as illustrated in Figure 15.1. For instance, the box typesetting "aa" has a width of 10.00003 pt , a height of 4.30554 pt , and a depth of 0 pt . The box typesetting "ag" has


Figure 15.1: The measurements of a box.
the same width and height, but a depth of 1.94444 pt. The box "Ag" (see Figure 15.1) has a width of 12.50003 pt , a height of 6.83331 pt , and a depth of 1.94444 pt .

The commands

```
\settowidth
\settoheight
\settodepth
```

each take two arguments. The first argument is a length command, the second is text (or math) to be measured by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. The corresponding measurement of the box in which the second argument is typeset is assigned to the length command in the first

\settowidth\{\mylength\}\{Ag\}
assigns 12.50003 pt to \mylength. It should be clear from this example how the $\backslash$ phantom and $\backslash$ hphantom commands (see Section 5.8.1) are related to this command.

To perform more complicated arithmetic with length commands, use the calc package.

## Rubber lengths

In addition to rigid lengths, such as 3in, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ can also set rubber lengths, that is, lengths that are allowed to stretch and shrink. Here is an example:
\setlength\{\stretchspace\}\{3in plus 10pt minus 8 pt$\}$
Assuming that \stretchspace is a length command, this command assigns it a value of 3 inches that can stretch by 10 points or shrink by 8 points, if necessary. So a box of width \stretchspace is 3 inches wide, plus up to 10 points, or minus up to 8 points.

Stretchable vertical spaces are often used before and after displayed text environments. ETEX adjusts these spaces to make the page look balanced. An example can be found in Section 15.1.7. \medskipamount is defined as

```
6.Opt plus 2.Opt minus 2.Opt
```

See Section 15.6 .3 for more examples.
The $\backslash$ fill command is a special rubber length that can stretch any amount. The stretching is done evenly if there is more than one $\backslash$ fill present. See the second example of brand-new environments in Section 15.2.5.

### 15.6 Custom lists

Although there are three ready-made list environments provided by $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ (see Section 6.2), it is often necessary to create one of your own using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ 's list environment. In fact, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ itself uses the list environment to define many of its standard environments, including:
        - The three list environments (Section 6.2)
        - The quote, quotation, and verse environments (Section 6.8)
        - Proclamations (Section 6.4)
        - The style environments center, flushleft, and flushright (Section 6.3)
        - The thebibliography environment (Section 10.5.1)
        - The theindex environment (Section 10.5.2)


### 15.6.1 Length commands for the list environment

The general layout of a list is shown in Figure 15.2. It uses six horizontal measurements and three vertical measurements. I now list these length commands.

## Vertical length commands

\topsep is most of the vertical space between the first item and the preceding text, and also between the last item and the following text. This space also includes \parskip, the extra vertical space inserted between paragraphs, and optionally, \partopsep, provided that the list environment starts a new paragraph.
$\backslash$ parsep is the space between paragraphs of the same item.
- sep is the space between items. Like \topsep, the actual gap is the sum of
- sep and \parsep.


All of these vertical length commands are rubber lengths (see Section 15.5.2).

## Horizontal length commands

By default, the margins of a list environment are the same as the margins of the surrounding text. If the list is nested within a list, the margins are wider and so the text is narrower.

The \leftmargin and \rightmargin length commands specify the distance between the edge of the item box and the left and right margins of the page.

The label is the text provided by the optional argument of an - command or provided as a default in the definition of the list environment. It is typeset in a box of width \labelwidth, which is indented
- indent units from the left margin, and separated by a space of \labelsep units from the text box. If the label is too wide to fit in the box, it is typeset at its full natural width, and the first line in the text box is indented.


The second and subsequent paragraphs of an item are typeset with their first lines indented by \listparindent units.


Figure 15.2: The layout of a custom list.

### 15.6.2 The list environment

Custom lists are created with the list environment, which is invoked as follows:

```
\begin{list}{default_label}{declarations}
 \item item1
 \item item2
 ..
\end{list}
```

The arguments are
        - default_label, the label for any items that do not specify their own, similar to the optional argument of the - command

        - declarations, the vertical and horizontal length commands and any other required parameters for the list

Here is a very simple example:

Here are the most important $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ rules about spaces in text, sentences, and paragraphs:
$\diamond$ Rule 1: Two or more spaces in text are the same as one.
$\diamond$ Rule 2: A blank line (that is, two end-of-line characters separated only by blanks and tabs) indicates the end of a paragraph.

Rules 1 and 2 make typing and copying very convenient.

I have used the $\diamond$ math symbol (\$\diamondsuit\$) as a default label, and I set the item box 0.5 inch from either margin. So this example is typed as follows:

```
\noindent Here are the most important \LaTeX\ rules about
spaces in text, sentences, and paragraphs:
\begin{list}{\diamondsuit}{\setlength{\leftmargin}%
 {.5in}\setlength{\rightmargin}{.5in}}
\item \textbf{Rule 1:} Two or more spaces in text
are the same as one.
\item \textbf{Rule 2:} A blank line (that is, two
end-of-line characters separated only by blanks and tabs)
indicates the end of a paragraph.
\end{list}
Rules 1 and~2 make typing and copying very convenient.
```

Here is a second variant:

Here are the most important $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ rules about spaces in text, sentences, and paragraphs:

Rule 1: Two or more consecutive spaces in text are the same as one.
Rule 2: A blank line (that is, two end-of-line characters separated only by blanks and tabs) indicates the end of a paragraph.

Rules 1 and 2 make typing and copying very convenient.

In this example, I dropped the optional default_label and typed Rule 1: and Rule 2: as (optional) arguments of the - commands:


```
\noindent Here are the most important \LaTeX\ rules about
spaces in text, sentences, and paragraphs:
\begin{list}{}{\setlength{\leftmargin}{.5in}%
 \setlength{\rightmargin}{.5in}}
\item[\textbf{Rule 1:}] Two or more consecutive spaces in
text are the same as one.
\item[\textbf{Rule 2:}] A blank line (that is,
two end-of-line characters separated only by blanks and
tabs) indicates the end of a paragraph.
\end{list}
Rules 1 and~2 make typing and copying very convenient.
```

For further simple examples, you can look at various document class files to see how standard environments such as verse, quote, and so on, are defined.

## Using counters

It is not very $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-like to provide the numbers for the rules in the examples above. It would be more logical for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to do the numbering. The following is a more EATEX-like coding of the second example:

```
\noindent Here are the most important \LaTeX\ rules about
spaces in text, sentences, and paragraphs:
\newcounter{spacerule}
\begin{list}{\textbf{Rule \arabic{spacerule}:}}
 {\setlength{\leftmargin}{.5in}
 \setlength{\rightmargin}{.5in}
 \usecounter{spacerule}}
 \item Two or more consecutive spaces in text are the
 same as one.\label{Li:Twoor}
 \item A blank line (that is, two end-of-line
```

```
 characters separated only by blanks and tabs)
 indicates the end of a paragraph.\label{Li:blankline}
\end{list}
Rules \ref{Li:Twoor} and~\ref{Li:blankline} make typing
and copying very convenient.
```

Note that

1. I declared the counter before the list environment with the line
\newcounter\{spacerule\}
2. I defined the default_label as
\textbf\{Rule \arabic\{spacerule\}:\} item In the declarations, I specified that the list should use the spacerule counter with the command
\usecounter\{spacerule\}

### 15.6.3 Two complete examples

In the previous examples, I set the values of \leftmargin and \rightmargin. The other length commands were not redefined, so their values remained the values set by the document class. In the following examples, I set the values of many more length commands.

Example 1 To get the following list,

Here are the most important ${ }^{A} T_{E} \mathrm{X}$ rules about spaces in text, sentences, and paragraphs:

Rule 1: Two or more consecutive spaces in text are the same as one.

Rule 2: A blank line-that is, two end-of-line characters separated only by blanks and tabsindicates the end of a paragraph.

Rules 1 and 2 make typing and copying very convenient.
we type

```
\noindent Here are the most important \LaTeX\ rules about
spaces in text, sentences, and paragraphs:
\newcounter{spacerule}
\begin{list}{\upshape\bfseries Rule \arabic{spacerule}:}
```

```
{\setlength{\leftmargin}{1.5in}
 \setlength{\rightmargin}{0.6in}
 \setlength{\labelwidth}{1.0in}
 \setlength{\labelsep}{0.2in}
 \setlength{\parsep}{0.5ex plus 0.2ex
 minus 0.1ex}
 \setlength{\itemsep}{0ex plus 0.2ex
 minus Oex}
 \usecounter{spacerule}
 \itshape}
 \item Two or more consecutive spaces in text are the
 same as one.\label{Li:Twoor}
 \item A blank line---that is, two end-of-line
 characters separated only by blanks and
 tabs---indicates
 the end of a paragraph.\label{Li:blankline}
Rules \ref{Li:Twoor} and~\ref{Li:blankline} make typing
```

\end\{list\} }
and copying very convenient.

Note that

1. I declared the counter as in the previous example.
2. The last item in declarations is \itshape, which typesets the entire list in italics.
3. The default_label is defined as
\upshape\bfseries Rule \arabic\{spacerule\}
My first attempt was to define it as
```
\bfseries Rule \arabic{spacerule}
```

which typesets Rule in bold italics (because in Step 2 we set the whole list in italics). To force the label to be typeset upright, I start the default_label with the \upshape command.
4. The left margin is set to 1.5 inches and the right margin to 0.6 inches:

```
\setlength{\leftmargin}{1.5in}
\setlength{\rightmargin}{0.6in}
```

5. Next I set the width of the label to 1 inch, and the space between the label and the item to 0.2 inches:
```
\setlength{\labelwidth}{1.0in}
\setlength{\labelsep}{0.2in}
```

6. Finally, I set the paragraph separation to 0.5 ex, allowing stretching by 0.2 ex and shrinking by 0.1 ex , and the item separation to 0 ex, allowing stretching by 0.2 ex and no shrinking, by
```
\setlength{\parsep}{0.5ex plus 0.2ex minus 0.1ex}
\setlength{\itemsep}{0ex plus 0.2ex minus 0ex}
```

The actual amount of item separation is calculated by adding the values specified for \parsep and - sep.


A complicated list such as this should be defined as a new environment. For example, you could define a myrules environment:

```
\newenvironment{myrules}
 {\begin{list}
 {\upshape \bfseries Rule \arabic{spacerule}:}
 {\setlength{\leftmargin}{1.5in}
 \setlength{\rightmargin}{0.6in}
 \setlength{\labelwidth}{1.0in}
 \setlength{\labelsep}{0.2in}
 \setlength{\parsep}{0.5ex plus 0.2ex minus 0.1ex}
 \setlength{\itemsep}{0ex plus 0.2ex minus 0ex}
 \usecounter{spacerule}
 \itshape} }
 {\end{list}}
```

and then use it anywhere, as in

```
\begin{myrules}
 \item Two or more consecutive spaces in text are the
 same as one.\label{Li:Twoor}
 \item A blank line---that is, two end-of-line
 characters separated only by blanks and
 tabs---indicates the end of a paragraph.
 \label{Li:blankline}
\end{myrules}
Rules \ref{Li:Twoor} and~\ref{Li:blankline} make typing
and copying very convenient.
```

which typesets as the first example shown on page 411.

Example 2 In Section 5.7.2, we discussed the formatting of the following type of glossary:
sentence is a group of words terminated by a period, exclamation point, or question mark.
paragraph is a group of sentences terminated by a blank line or by the $\backslash \mathrm{par}$ command.
Now we can create the glossary as a custom list:

```
\begin{list}{}
 {\setlength{\leftmargin}{30pt}
 \setlength{\rightmargin}{0pt}
 \setlength{\itemindent}{14pt}
 \setlength{\labelwidth}{40pt}
 \setlength{\labelsep}{5pt}
 \setlength{\parsep}{0.5ex plus 0.2ex minus 0.1ex}
 \setlength{\itemsep}{0ex plus 0.2ex minus 0ex}}
 \item[\textbf{sentence}\hfill] is a group of words
 terminated by a period, exclamation point,
 or question mark.
 \item[\textbf{paragraph}\hfill] is a group of sentences
 terminated by a blank line or by the \com{par} command.
\end{list}
```

There is nothing new in this example except the \hfill commands in the optional arguments to left adjust the labels. With the long words in the example this adjustment is not necessary, but it would be needed for shorter words.

See Section 3.3 of The LATE ${ }^{X}$ Companion, 2nd edition [46] on how to customize the three standard list environments and also for more complicated custom lists.

### 15.6.4 The trivlist environment

LTEX also provides a trivlist environment, meant more for programmers than users. The environment is invoked in the form

```
\begin{trivlist}
 body
\end{trivlist}
```

It is similar to the list environment except that there are no arguments, and all the length commands are trivially set, most to 0 points, except for \listparindent and $\backslash$ parsep, which are set to equal \parindent and \parskip, respectively. For instance, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ defines the center environment as follows:

```
\begin{trivlist}
 \centering \item[]
\end{trivlist}
```


### 15.7 The dangers of customization

We can customize $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ in so many ways. We can add packages to expand its power and define new commands that better suit our work habits. These enhance ${ }^{\mathrm{ET}_{\mathrm{E}} \mathrm{X}}$ and make it easier to work with. But they also introduce difficulties. Let us start with the obvious.

Whoever introduced the command \textcompwordmark knew that—even if we use command completion-we are not going to type
if $\backslash$ textcompwordmark $f$
to avoid having a ligature (see Section 5.4.6). It is a lot of typing, and the source file becomes hard to read. This cries out for a user-defined command, say, \Iff, which is short and readable (see Section 15.1.1).

When introducing user-defined commands, watch out for the following traps.

Trap 1 ■ Redefining a command that is a necessary part of $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$.

This is easy to avoid. As discussed in Section 15.1.7, you can easily find out whether a command is already in use. If it is, do not redefine it unless you really know what you are doing.

Trap 2 ■ Defining too many commands.

This creates two problems. Your editor has a hard time making changes in your source file. And a few years later, when you want to reuse the material, you have a difficult time understanding all those clever commands.

Trap 3 ■ Your contribution appears in a volume with many other authors and your user-defined commands create conflicts.

As your article appears in a publication, some parts of it are used for the whole volume. The title and maybe even the section titles are used in the table of contents. The abstracts may be collected for the whole volume or there may be a joint bibliography.

With the advent of the internet, there are now collections of thousands of math articles; PlanetMath.org is one example. Write your articles so that even the editors of PlanetMath.org can use it.

Rule 1 ■ Do not use your own commands in the title of the article, in the abstract, in section titles, in the bibliography, or in captions of figures and tables.

Trap 4 ■ You submit the article to a journal that does not permit a separate custom command file.

For such journals, just copy the needed user-defined commands into the preamble of your article. Go through the list and delete those user-defined commands that are not used in this article. This helps the editor to look up your commands from a shorter list.

Rule 2 ■ Introduce judiciously user-defined commands with very short names.

Introducing one-letter commands-for instance, using \C for the complex fieldis dangerous because many one-letter commands are reserved by $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$.

Two-letter user-defined commands are not quite this bad. Of the 2,500 or so possibilities only a few dozen are used by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. The danger here is, of course, conflict with other authors and confusion for the editor. My command file has about 15 two-letter commands. For instance $\backslash j j$, part of the $\backslash j j, \backslash J J, \backslash J J m$ family. Also $\backslash I d$, because Id is the standard notation for ideal lattices. Some editors may think that this is 15 too many.

Rule 3 ■ Do not use \def to define your commands, with the exception of a very few delimited commands.

Using \def means giving up ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 's built in defense. In the editorial office of my journal, about half the submitted articles that we cannot typeset violate this rule.

Rule 4 ■ Do not redefine length commands, especially, if you do not know what other length commands are computed based on the ones you change.

The page layout diagram, Figure 10.4, should provide examples. Even simpler, Do not redefine length commands. Let the document class define them for your article.

Rule 5 - Make sure that the packages you use are compatible.

For instance, the popular psfrag and epsfig packages cause problems if used with the AMS packages.

Be cautious when you use packages that redefine a lot of ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands, such as hyperref (see Section 13.2).

You can read more about the plight of authors in the hands of incompetent editors in my article [31] and the difficult job of editors with articles violating the above rules in Enrico Gregorio [16].

## $B{ }_{B} T_{E} X$

The BibTEX application, written by Oren Patashnik, assists $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ users in compiling bibliographies, especially long ones. Short bibliographies can easily be placed in the document directly (see Section 10.5.1).

It takes a little effort to learn BibTEX. But in the long run, the advantages of building bibliographic databases that can be reused and shared outweigh the disadvantage of a somewhat steep learning curve.

The bibliographic database files, the bib files, contain the bibliographic entries. We discuss the format of these entries in Section 16.1, and then describe how to use BIBTEX to create bibliographies in Section 16.2.

BibTE $_{\mathrm{E}} \mathrm{X}$ uses a style, called a bibliographic style, or bst file, to format entries. On the next two pages we show the bibliography of the sampartb.tex sample article typeset with six different style files.

To simplify our discussion, in the rest of this chapter I discuss only one style, the AMS plain style, amsplain.bst, version 2.0. All of the examples shown are in this style, and several of the comments I make are true only for the AMS plain style. If you choose to use a different style, you should check its documentation for special rules.
[1] Soo-Key Foo. Lattice Constructions. PhD thesis, University of Winnebago, Winnebago, MN, December 1990.
[2] George A. Menuhin. Universal Algebra. D. van Nostrand, Princeton, 1968.
[3] Ernest T. Moynahan. Ideals and congruence relations in lattices. II. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7:417-434, 1957.
[4] Ernest T. Moynahan. On a problem of M. Stone. Acta Math. Acad. Sci. Hungar., 8:455-460, 1957.
[5] Ferenc R. Richardson. General Lattice Theory. Mir, Moscow, expanded and revised edition, 1982.

## plain.bst

[Foo90] Soo-Key Foo. Lattice Constructions. PhD thesis, University of Winnebago, Winnebago, MN, December 1990.
[Men68] George A. Menuhin. Universal Algebra. D. van Nostrand, Princeton, 1968.
[Moy57a] Ernest T. Moynahan. Ideals and congruence relations in lattices. II. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7:417-434, 1957.
[Moy57b] Ernest T. Moynahan. On a problem of M. Stone. Acta Math. Acad. Sci. Hungar., 8:455-460, 1957.
[Ric82] Ferenc R. Richardson. General Lattice Theory. Mir, Moscow, expanded and revised edition, 1982.

## alpha.bst

1. Soo-Key Foo, Lattice constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990.
2. George A. Menuhin, Universal algebra, D. van Nostrand, Princeton, 1968.
3. Ernest T. Moynahan, Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 417-434 (Hungarian).
4. $\qquad$ , On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
5. Ferenc R. Richardson, General lattice theory, expanded and revised ed., Mir, Moscow, 1982 (Russian).

## amsplain.bst

[Foo90] Soo-Key Foo, Lattice constructions, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990.
[Men68] George A. Menuhin, Universal algebra, D. van Nostrand, Princeton, 1968.
[Moy57a] Ernest T. Moynahan, Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 417-434 (Hungarian).
[Moy57b] Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[Ric82] Ferenc R. Richardson, General lattice theory, expanded and revised ed., Mir, Moscow, 1982 (Russian).
[1] S.-K. Foo, Lattice Constructions, PhD thesis, University of Winnebago, Winnebago, MN, Dec. 1990.
[2] G. A. Menuhin, Universal Algebra, D. van Nostrand, Princeton, 1968.
[3] E. T. Moynahan, Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7 (1957), pp. 417-434.
[4] ——, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar., 8 (1957), pp. 455-460.
[5] F. R. Richardson, General Lattice Theory, Mir, Moscow, expanded and revised ed., 1982.

```
siam.bst
```

[1] F. R. Richardson, General Lattice Theory. Moscow: Mir, expanded and revised ed., 1982.
[2] G. A. Menuhin, Universal Algebra. Princeton: D. van Nostrand, 1968.
[3] E. T. Moynahan, "On a problem of M. Stone," Acta Math. Acad. Sci. Hungar., vol. 8, pp. 455460, 1957.
[4] S.-K. Foo, Lattice Constructions. PhD thesis, University of Winnebago, Winnebago, MN, Dec. 1990.
[5] E. T. Moynahan, "Ideals and congruence relations in lattices. II," Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., vol. 7, pp. 417-434, 1957.

ieeetr.bst

### 16.1 The database

A BIBTEX database is a text file containing bibliographic entries. To use $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$, you first have to learn how to assemble a database. This section explains how to do that.

There may be special tools available for your computer system that assist you in building and maintaining your bibliographic data. Such tools make compiling the data easier and may minimize formatting errors.

You can find all the examples in this section in the template.bib file in the samples folder (see page 4).

### 16.1.1 Entry types

A bibliographic entry is given in pieces called fields. The style (see Section 16.2.2) specifies how these fields are typeset. Here are two typical entries:

```
@BOOK{gM68,
 author = "George A. Menuhin",
 title = "Universal Algebra",
 publisher = "D. ~Van Nostrand",
 address = "Princeton",
 year = 1968,
 }
```

```
 @ARTICLE{eM57,
author = "Ernest T. Moynahan",
title = "On a Problem of {M. Stone}",
journal = "Acta Math. Acad. Sci. Hungar.",
pages = "455-460",
volume = 8,
year = 1957,
}
```

The start of an entry is indicated with an at sign (©) followed by the entry type. In the first example, the entry type is BOOK, while in the second, it is ARTICLE. The entry type is followed by a left brace (\{). The matching right brace (\}) indicates the end of the entry. $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ also allows you to use parentheses as delimiters for an entry. In this book, however, we use braces to enclose an entry.

The string @BOOK\{ is followed by a label, gM68, which designates the name of the entry. Refer to this entry in your document with \cite\{gM68\}. The label is followed by a comma and a series of fields. In this example, there are five fields, author, title, publisher, address, and year. Each field starts with the field name, followed by = and the value of the field enclosed in double quotes ("). Be sure to use " and not LATEX double quotes (' ' or ''). Alternatively, BiBTEX also allows you to use braces to enclose the field value. In this book, we use double quotes to enclose a field.

Numeric field values, that is, fields consisting entirely of digits, do not need to be enclosed in double quotes or braces, for instance, year in the examples above, volume in the second example, and number in some of the examples that follow. Page ranges, such as $455-460$, are not numeric field values since they contain -, so they must be enclosed in double quotes or braces.

There must be a comma before each field. The comma before the first field is placed after the label.

There are many standard entry types, including
ARTICLE an article in a journal or magazine
BOOK a book with an author (or editor) and a publisher
BOOKLET a printed work without a publisher
INBOOK a part of a book, such as a chapter or a page range that, in general, is not titled or authored separately

INCOLLECTION a part of a book with its own title and perhaps author
INPROCEEDINGS an article in a conference proceedings with its own title and author

MANUAL technical documentation

MASTERSTHESIS a master's thesis
MISC an entry that does not fit in any other category
PHDTHESIS a Ph.D. thesis
PROCEEDINGS the proceedings of a conference
TECHREPORT a report published by a school or institution
UNPUBLISHED an unpublished paper
Each entry includes a number of fields from the following list:

address	institution	pages
author	journal	publisher
booktitle	key	school
chapter	language	series
crossref	month	title
edition	note	type
editor	number	volume
howpublished	organization	year

The style you choose determines which of the fields within an entry are actually used. All the others are ignored. You may also add fields for your own use. For example, you may want to add a mycomments field for personal comments. Such fields are ignored unless you have a bibliography style that uses them.

Commonly used examples of new field names include URL, abstract, ISBN, keywords, mrnumber, and so on. The language field is used by the AMS styles but not by any of the other styles mentioned in this chapter.

## Tip

1. BibTEX does not care whether you use uppercase or lowercase letters (or mixed) for the names of entry types and fields. In this book, the entry types are shown in uppercase and field names in lowercase.
2. Placing a comma after the last field is optional. I recommend that you put it there so that when you append a new field to the entry, the required comma separating the fields is present.
For each entry type there are both required and optional fields. Later in this section, I give two examples of each entry type. The first example of an entry type uses a small set of fields, while the second example is a maximal one, showing a large number of optional fields.

### 16.1.2 Typing fields

Make sure you type the field names correctly. If you misspell one, BIBTEX ignores the field. BIBTEX also warns you if a required field is missing.

The author and editor fields require a name.

## Rule ■ Names

1. Most names can be typed as usual, "Ernest T. Moynahan" or "Moynahan, Ernest T. ", with one comma separating the family name from the given names.
2. Type two or more names separated by and. For instance,
```
author= "George Blue and Ernest Brown and Soo-Key Foo",
```

3. The family name of Miguel Lopez Fernandez is Lopez Fernandez, so type it as "Lopez Fernandez, Miguel". This informs BibTEX that Lopez is not a middle name.
4. Type Orrin Frink, Jr. as "Frink, Jr., Orrin".
Rules 3 and 4 are seldom needed. In a bibliography of about 1,500 items, I found fewer than 10 names that could not be typed as usual. Note that you can type John von Neumann as "John von Neumann" or "von Neumann, John". Because BibTEX knows about von, it handles the name properly.

There are a few rules concerning the title field.

## Rule <br> Title

1. You should not put a period at the end of a title. The style supplies the appropriate punctuation.
2. Many styles, including the AMS styles, convert titles, except for the first letter of the title, to lowercase for all entry types. If you want a letter to appear in uppercase, put it-or the entire word-in braces. The same rule applies to the edition field. Some other styles only do this conversion for the titles of non-book-like entries.
3. To maximize the portability of your database, you should type titles with each important word capitalized:
```
title = "On a Problem of {M. Stone}",
```

The style used in this book, amsplain.bst, converts Problem to problem, so it
makes no difference, but some styles do not. To be on the safe side, you should capitalize all words that may have to be capitalized.

For the record, here are the complete rules for titles: Capitalize (1) the first word; (2) the first word in a subtitle ( $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ assumes that a subtitle follows a colon, so it capitalizes the first word after a colon-a colon not introducing a subtitle should be typed in braces); (3) all other words except articles, unstressed conjunctions, and unstressed prepositions. Words that should never be converted to lowercase, for example proper names such as Hilbert, should be enclosed in braces to prevent them from being converted to lowercase. In the example above, two letters in the title should not be converted to lowercase, so we enclosed M. Stone in braces. We could also have typed \{M. S\}tone or $\{\mathrm{M}\}.\{\mathrm{S}\}$ tone.
$\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ and the style automatically handle a number of things for you that you would have to handle yourself when typing text.

1. You do not have to mark periods in abbreviations, as.$_{\sqcup}$ in the names of journals (see Section 5.2.2). So
```
journal = "Acta Math. Acad. Sci. Hungar.",
```

typesets correctly.
2. You can type a single hyphen for a page range instead of the usual -- in the pages field (see Section 5.4.2). So

```
pages = "455-460",
```

typesets correctly with an en dash.
3. You do not have to type nonbreakable spaces with ~ in the author or editor fields (see Section 5.4.3):

```
author = "George A. Menuhin",
```

is correct. Normally you would type George $\sim$ A. Menuhin.
Finally, we state a rule about accented characters.

## Rule ■ Accents

Put accented characters in braces: $\{\backslash "\{a\}\}$.

This rule means that

```
author = "Paul Erd\H{o}s",
```

is not recommended. Instead, type

```
author = "Paul Erd{\H{o}}s",
```

This rule is, again, about portability. Some styles, e.g., alpha and amsalpha, create a citation for an article from the first three letters of the name and the last two digits of the year.

```
author = "Kurt G{\"{o}}del",
```

year = 1931,
creates the citation: [Göd31]. The accent is used only if the accents rule has been followed.

The downside of this rule is that the braces suppress kerning.

### 16.1.3 Articles

Entry type ARTICLE
Required fields author, title, journal, year, pages
Optional fields volume, number, language, note
Examples:

## $\Gamma$

1. Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
2. Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), no. 5, 455-460 (English), Russian translation available.
typed as
@ARTICLE\{eM57, author = "Ernest T. Moynahan", title = "On a Problem of \{M. Stone\}", journal = "Acta Math. Acad. Sci. Hungar.", pages = "455-460", volume = 8, year = 1957, \}

## @ARTICLE\{eM57a,

 author = "Ernest T. Moynahan", title = "On a Problem of \{M. Stone\}", journal = "Acta Math. Acad. Sci. Hungar.", pages = "455-460",```
volume = 8,
number = 5,
year = 1957,
note = "Russian translation available",
language = "English",
}
```


16.1.4 Books

Entry type
BOOK
Required fields author (or editor), title, publisher, year
Optional fields edition, series, volume, number, address, month, language, note

Examples:
Γ

1. George A. Menuhin, Universal algebra, D. Van Nostrand, Princeton, 1968.
2. George A. Menuhin, Universal algebra, second ed., University Series in Higher Mathematics, vol. 58, D. Van Nostrand, Princeton, March 1968 (English), no Russian translation.
typed as
@BOOK\{gM68,
author = "George A. Menuhin", title = "Universal Algebra", publisher = "D. ~Van Nostrand", address = "Princeton", year = 1968, \}
@BOOK\{gM68a,
author = "George A. Menuhin", title = "Universal Algebra", publisher = "D. ${ }^{\text {Van Nostrand", }}$ address = "Princeton", year = 1968, month = mar,
series = "University Series in Higher Mathematics",
volume $=58$,
edition = "Second",
note = "no Russian translation",
language = "English",
\}
Abbreviations, such as mar, are discussed in Section 16.1.9.
A second variant of book has an editor instead of an author:
15. Robert S. Prescott (ed.), Universal algebra, D. Van Nostrand, Princeton, 1968.
typed as

```
@BOOK{rP68,
    editor = "Robert S. Prescott",
    title = "Universal Algebra",
    publisher = "D. ~Van Nostrand",
    address = "Princeton",
    year = 1968,
    }
```


16.1.5 Conference proceedings and collections

Entry type INPROCEEDINGS
Required fields author, title, booktitle, year
Optional fields address, editor, series, volume, number, organization, publisher, month, note, pages, language

Examples:
7. Peter A. Konig, Composition of functions. Proceedings of the Conference on Universal Algebra, 1970.
8. Peter A. Konig, Composition of functions. Proceedings of the Conference on Universal Algebra (Kingston, ON) (G. H. Birnbaum, ed.), vol. 7, Canadian Mathematical Society, Queen's Univ., December 1970, available from the Montreal office, pp. 1-106 (English).
typed as
@INPROCEEDINGS\{pK69, author = "Peter A. Konig", title = "Composition of Functions". booktitle = "Proceedings of the Conference on

Universal Algebra", year = 1970, \}

```
@INPROCEEDINGS{pK69a,
    author = "Peter A. Konig",
    title = "Composition of Functions".
    booktitle = "Proceedings of the Conference on
    Universal Algebra",
address = "Kingston, ON",
publisher = "Queen's Univ.",
organization = "Canadian Mathematical Society",
editor = "G. H. Birnbaum",
pages = "1-106",
volume = 7,
year = 1970,
month = dec,
note = "available from the Montreal office",
language = "English",
}
```

The address field provides the location of the meeting. The address of the publisher should be in the publisher field and the address of the organization in the organization field.

Entry type INCOLLECTION
Required fields author, title, booktitle, publisher, year
Optional fields editor, series, volume, number, address, edition, month, note, pages, language
Examples:

1. Henry H. Albert, Free torsoids, Current Trends in Lattices, D. Van Nostrand, 1970.
2. Henry H. Albert, Free torsoids, Current Trends in Lattices (George Burns, ed.), vol. 2, D. Van Nostrand, Princeton, January 1970, new edition is due next year, pp. 173-215 (German).
is typed as
```
@INCOLLECTION{hA70,
    author = "Henry H. Albert",
    title = "Free Torsoids",
    booktitle = "Current Trends in Lattices".
    publisher = "D. ~Van Nostrand",
    year = 1970,
    }
```

```
@INCOLLECTION{hA70a,
    author = "Henry H. Albert",
    editor = "George Burns",
title = "Free Torsoids",
booktitle = "Current Trends in Lattices".
publisher = "D. ~Van Nostrand",
address = "Princeton",
pages = "173-215",
volume = 2,
year = 1970,
month = jan,
note = "new edition is due next year",
language = "German",
}
```

The address field contains the address of the publisher.

Cross-referencing

If your database has several articles from the same conference proceedings and collections, you may prefer to make an entry for the entire volume, and cross-reference individual articles to that entry. For instance,

```
@PROCEEDINGS{UA69,
    title = "Proceedings of the Conference on,
    Universal Algebra",
    booktitle = "Proceedings of the Conference on
            Universal Algebra",
    address = "Kingston, ON",
    publisher = "Canadian Mathematical Society",
    editor = "G. H. Birnbaum",
    volume = 7,
    year = 1970,
    }
```

may be the entry for the proceedings volume as a whole, and

```
@INPROCEEDINGS{pK69a,
    author = "Peter A. Konig",
    title = "Composition of Functions",
    booktitle = "Proceedings of the Conference on
            Universal Algebra",
    pages = "1-106",
    crossref = "UA69",
    }
```

is the cross-referencing entry for a specific article. These two entries produce the following:

Γ

1. G. H. Birnbaum (ed.), Proceedings of the conference on universal algebra, vol. 7, Kingston, ON, Canadian Mathematical Society, 1970.
2. Peter A. Konig, Composition of functions, in Birnbaum [1], pp. 1-106.

Rule ■ Cross-references

1. All the required fields of the cross-referencing entry must appear in either that entry or in the cross-referenced entry.
2. The cross-referenced entry should have both a title and a booktitle field.
3. The cross-referenced entry must appear in the bib file later than any entry that cross-references it.

16.1.6 Theses

Entry type MASTERSTHESIS or PHDTHESIS
Required fields author, title, school, year
Optional fields type, address, month, note, pages
Examples:

Γ

1. Soo-Key Foo, Lattice constructions, Ph.D. thesis, University of Winnebago, 1990.
2. Soo-Key Foo, Lattice constructions, Ph.D. dissertation, University of Winnebago, Winnebago, MN, December 1990, final revision not yet available, pp. 1-126.
is typed as
```
@PHDTHESIS{sF90,
    author = "Soo-Key Foo",
    title = "Lattice Constructions",
    school = "University of Winnebago",
    year = 1990,
    }
```

```
@PHDTHESIS{sF90a,
author = "Soo-Key Foo",
title = "Lattice Constructions",
school = "University of Winnebago",
address = "Winnebago, MN",
year = 1990,
month = dec,
note = "final revision not yet available",
type = "Ph.D. dissertation",
pages = "1-126",
}
```

If the type field is present, its content takes the place of the phrase Ph.D. thesis (or Master's thesis).

16.1.7 Technical reports

Entry type TECHREPORT
Required fields author, title, institution, year
Optional fields type, number, address, month, note
Examples:

Γ

1. Grant H. Foster, Computational complexity in lattice theory, tech. report, Carnegie Mellon University, 1986.
2. Grant H. Foster, Computational complexity in lattice theory, Research Note 128A, Carnegie Mellon University, Pittsburgh, PA, December 1986, in preparation.
is typed as
@TECHREPORT\{gF86, author = "Grant H. Foster", title = "Computational Complexity in Lattice Theory", institution = "Carnegie Mellon University", year = 1986, \}
@TECHREPORT\{gF86a, author = "Grant H. Foster", title = "Computational Complexity in Lattice Theory", institution = "Carnegie Mellon University", year $=1986$,
```
month = dec,
type = "Research Note",
address = "Pittsburgh, PA",
number = "128A",
note = "in preparation",
}
```


16.1.8 Manuscripts and other entry types

Entry type UNPUBLISHED
Required fields author, title, note
Optional fields month, year
Examples:
Γ

1. William A. Landau, Representations of complete lattices, manuscript, 55 pages.
2. William A. Landau, Representations of complete lattices, manuscript, 55 pages, December 1975.
is typed as
```
@UNPUBLISHED{wL75,
    author = "William A. Landau",
    title = "Representations of Complete Lattices",
    note = "manuscript, 55~pages",
    }
@UNPUBLISHED{wL75a,
    author = "William A. Landau",
    title = "Representations of Complete Lattices",
    year = 1975,
    month = dec,
    note = "manuscript, 55~pages",
    }
```

Other standard entry types include

```
Entry type BOOKLET
Required field title
Optional fields author, howpublished, address, month, year, note
```

| Entry type | INBOOK |
| :---: | :---: |
| Required fields | author or editor, title, chapter or pages, publisher, year |
| Optional fields | series, volume, number, type, address, edition, month, pages, language, note |
| Entry type | MANUAL |
| Required field | title |
| Optional fields | author, organization, address, edition, month, year, note |
| Entry type | MISC |
| Required field | at least one of the optional fields must be present |
| Optional fields | author, title, howpublished, month, year, note, pages |
| Entry type | PROCEEDINGS |
| Required fields | title, year |
| Optional fields | editor, series, volume, number, address, organization, publisher, month, note |

16.1.9 Abbreviations

You may have noticed the field month $=\mathrm{dec}$ in some of the examples. This field uses an abbreviation. Most BibTEX styles, including the AMS styles, include abbreviations for the months of the year: jan, feb, ..., dec. When an abbreviation is used, it is not enclosed in quotes (") or braces (\{ \}). The style defines what is actually to be typeset. Most styles typeset dec as either Dec. or December.

The name of the abbreviation, such as dec, is a string of characters that starts with a letter, does not contain a space, an equal sign (=), a comma, or any of the special characters listed in Section 5.4.4.

You may define your own abbreviations using the command @STRING. For example,
@STRING\{au = "Algebra Universalis"\}
A string definition can be placed anywhere in a bib file, as long as it precedes the first use of the abbreviation in an entry.

The AMS supplies the mrabbrev.bib file containing the standard abbreviations for many mathematical journals. Find it at ams.org, under Reference Tools, click on MR Serials Abbreviations for BibTeX. Based on this file, you can make your own abbrev.bib file containing entries for all the journals you reference with whatever abbreviations you find easiest to remember. You should pare down the file, mrabbrev. bib, because it is too large for some systems to handle.

If you use this scheme, the command you use to specify the bib files may look like
\bibliography\{abbrev,... \}
Section 16.2.1 explains the \bibliography command.

16.2 Using BIBT $_{\boldsymbol{E}} \boldsymbol{X}$

In Section 16.1, you learned how to create database files. The sample bib files are template.bib and sampartb.bib in the samples folder (see page 4). In this section, you learn how to use BiBTEX to process these files to create a bibliography. We illustrate the process of working with $\mathrm{BiBT}_{\mathrm{E}} \mathrm{X}$ with the sampartb sample article.

We use the amsplain style. To obtain all six examples of different styles shown on pages 422-423, just change amsplain to the appropriate style name in your document and typeset it.

One BibTEX style behaves differently. The apacite style of the American Psychological Association requires that the preamble of your document include the line

```
\usepackage{apalike}
```

in addition to using the style file. The package can also be modified by a large number of options.

16.2.1 Sample files

Type the following two lines to replace the thebibliography environment in the sampart.tex sample document:
\bibliographystyle\{amsplain\}
\bibliography\{sampartb\}
Save the new sample article as sampartb.tex. The first line specifies the bst file, amsplain.bst, which is part of the AMS distribution (see Section 11.6). The second line specifies the database files used. In this case there is only one, sampartb.bib.

The contents of the sampartb. bib bibliographic database file are as follows:

```
@BOOK{gM68,
    author = "George A. Menuhin",
    title = "Universal Algebra",
    publisher = "D. `Van Nostrand",
    address = "Princeton",
    year = 1968,
    }
```

```
@BOOK\{fR82,
    author = "Ferenc R. Richardson",
    title = "General Lattice Theory",
    edition = "Expanded and Revised",
    language = "Russian",
    publisher = "Mir",
    address = "Moscow",
    year \(=1982\),
    \}
@ARTICLE\{eM57,
    author = "Ernest T. Moynahan",
    title = "On a Problem of \{M. Stone\}",
    journal = "Acta Math. Acad. Sci. Hungar.",
    pages = "455-460",
    volume = 8,
    year = 1957,
    \}
@ARTICLE\{eM57a,
    author = "Ernest T. Moynahan",
    title = "Ideals and Congruence Relations in
    Lattices.~\textup\{II\}",
    journal = "Magyar Tud. Akad. Mat. Fiz. Oszt. K\{\"\{o\}\}zl.",
    language = "Hungarian",
    pages = "417-434",
    volume = 7,
    year = 1957,
    \}
```

```
@PHDTHESIS{sF90,
```

@PHDTHESIS{sF90,
author = "Soo-Key Foo",
author = "Soo-Key Foo",
title = "Lattice Constructions",
title = "Lattice Constructions",
school = "University of Winnebago",
school = "University of Winnebago",
address = "Winnebago, MN",
address = "Winnebago, MN",
year = 1990,
year = 1990,
month = dec,
month = dec,
}

```
    }
```

Type sampartb.bib or copy it from the samples folder to your work folder.

16.2.2 Setup

Before you start BibTEX, make sure that everything is set up properly as described in this section.

To list database entries in the bibliography, use the \cite command. Refer to Section 10.5.1 for details on how to use citations. If you want to have a reference listed in the bibliography without a citation in the text, then use the \nocite command. For example,

```
\cite{pK57}
```

includes the reference in the bibliography and cites the entry with label pK57, whereas

```
\nocite{pK57}
```

includes the reference in the bibliography but does not cite the entry. In either case, one of the bib files specified in the argument of the \bibliography command must contain an entry with the label pK57. The \nocite\{*\} command includes all the entries from the bibliographic databases you've specified.

Your document must specify the bibliography style and must name the bib files to be used. For instance, the sampartb. tex sample article contains the lines
\bibliographystyle\{amsplain\}
\bibliography\{sampartb\}
The \bibliographystyle command specifies amsplain.bst as the style and the \bibliography command specifies the database file sampartb.bib. To use several database files, separate them with commas, as in

```
\bibliography{abbrev,gg,lattice,sampartb}
```

where
 - abbrev.bib contains user-defined abbreviations
 - gg.bib contains personal articles
 - lattice. bib contains lattice theory articles by other authors
 - sampartb. bib contains additional references needed for sampartb.tex

It is important to make sure that the bst file, the bib file(s), and the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document(s) are in folders where BIBTEX can find them. If you are just starting out, you can simply copy all of them into one folder. Later, you may want to look for a more permanent solution by keeping the files abbrev.bib and lattice.bib in one "central" location, while placing sampartb.bib in the same folder as its corresponding ${ }^{\mathrm{ET}} \mathrm{E} \mathrm{X}$ document.

16.2.3 Four steps of $B_{1 B} T_{E} X i n g$

The following steps produce a typeset bibliography in your $\mathrm{IATEX}_{\mathrm{E}}$ document. We use the sampartb.tex sample article as an example.

Step 1 Check that BIBTEX, your $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document, and the bib files are placed in the appropriate folders.

Step 2 Typeset sampartb. tex to get a fresh aux file. This step is illustrated in Figure 16.1.

Figure 16.1: Using $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$, step 2.

Figure 16.2: Using BibTEX, step 3.

Step 3 Run $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ on the sampartb. aux file in one of the following three ways:
 - by invoking it with the argument sampartb
 - by starting the application and then opening sampartb.aux
 - by running it by choosing it as a menu option of your editor or GUI front end or by clicking on an icon

If BibTEX cannot find a crucial file, for example, the bst file, it stops. The reason it stopped is shown in the log window and also written to a blg (bibliography log) file, sampartb.blg. Correct the error(s) and go back to step 2 . A successful run creates a bbl (bibliography) file, sampartb.bbl, in addition to sampartb.blg. This step is illustrated in Figure 16.2.

Step 4 Typeset the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ document sampartb. tex twice.
BibTEX uses and creates a number of files when it is run. To illustrate this process, complete the four steps using sampartb.tex.

Step 1 Start fresh by deleting the aux, blg, and bbl files, if they are present.
Step 2 Typeset the article sampartb. tex to get an aux file (see Figure 16.1). Notice that the log file contains warnings about missing references and a number of other lines not relevant to the current discussion. The lines in the aux file containing bibliographic information are
\citation\{fR82\}
\citation\{gM68\}
\citation\{eM57\}
\citation\{sF90\}
\citation\{eM57a\}
\bibstyle\{amsplain\}
\bibdata\{sampartb\}
Each \citation command in this file corresponds to a \cite or \nocite command in the article. The lines
\bibliographystyle\{amsplain\}
\bibliography\{sampartb\}
in sampartb.tex are written as
\bibstyle\{amsplain\}
\bibdata\{sampartb\}
in the sampartb. aux file.

Step 3 Now run BibTEX on the sampartb. aux file (see Figure 16.2). How we do this, depends on the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ installation you have. In UNIX installations, you type

```
bibtex intrarti
```

at the command line. In newer user interfaces, $\mathrm{BibT}_{\mathrm{E}} X$ is represented by an icon, and you drop intrarti.aux into it. In modern installations, your editor also runs BibTEX. In WinEdt (see Section A.1.2), run BibTEX by clicking on the BibTEX button. In TeXShop (see Section A.2.1), change the LaTeX button to BibTeX and click on the Typeset button. Now change the BibTeX button back to LaTeX. Click on the Typeset button, and you have the typeset article with the bibliography.

BibTEX generates two new files: sampartb.blg and sampartb.bbl. Look at sampartb.blg:

This is BibTeX, C Version 0.99c
The top-level auxiliary file: sampartb.aux
The style: amsplain.bst
Database file \#1: sampartb.bib
On some systems, this file may be much longer than the one I show here. At present, this blg file does not contain much important information. If there were any warnings or errors, they would be listed in this file.

The sampartb.bbl file, in which BIBTEX created a thebibliography environment (see Section 10.5.1) is more interesting:

```
\providecommand{\bysame}{\leavevmode%
\hbox to3em {\hrulefill}\thinspace}
\begin{thebibliography}{1}
```

\bibitem\{sF90\}
Soo-Key Foo, \emph\{Lattice constructions\}, Ph.D. thesis, University of Winnebago, Winnebago, MN, December 1990.
\bibitem\{gM68\}
George~A. Menuhin, \emph\{Universal algebra\}, D. ~Van Nostrand, Princeton, 1968.
\bibitem\{eM57a\}
Ernest~T. Moynahan, \emph\{Ideals and congruence
relations in lattices. $\backslash t e x t u p\{I I\}\}$,
Magyar Tud. Akad. Mat. Fiz. Oszt. K\{\"\{o\}\}zl.
\textbf\{7\} (1957), 417-434 (Hungarian).

```
\bibitem{eM57}
\bysame, \emph{0n a problem of {M. Stone}}, Acta
Math. Acad. Sci. Hungar. \textbf{8} (1957),
455-460.
\bibitem{fR82}
Ferenc~R. Richardson, \emph{General lattice theory},
expanded and revised ed., Mir, Moscow,
1982 (Russian).
\end{thebibliography}
```

Observe that the nonbreakable spaces (ties) and the \bysame command have been provided in the author fields.

Step 4 Now typeset sampartb.tex again. The typeset version now has a ReferENCES section, constructed from the bbl file, but the new log file has warnings about missing entries. The new aux file contains five interesting new lines:

```
\bibcite{sF90}{1}
\bibcite{gM68}{2}
\bibcite{eM57a}{3}
\bibcite{eM57}{4}
\bibcite{fR82}{5}
```

These lines identify the cross-reference label sF90 (see the first line shown-the symbol designates Foo's thesis in sampartb. bib) with the number 1, and so on. Now typeset sampartb.tex again, and all the citations are correctly placed in the typeset article.

Observe:

1. The crucial step 3, running the $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ application, gives different error messages and obeys different rules from ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$-see Section 16.2.4.
2. The sampartb. bbl file was created by $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$. It is not changed by running $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.

16.2.4 $\quad B_{i B} T_{E} X$ rules and messages

Rule ■ BibTEX and \%

You cannot comment out a field with an $\%$.

For example, the entry

```
@ARTICLE{eM57,
    author = "Ernest T. Moynahan",
title = "On a Problem of {M. Stone}",
journal = "Acta Math. Acad. Sci. Hungar.",
% pages = "455-460",
volume = 8,
year = 1957,
}
```

causes $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ to generate the error message

```
You're missing a field name
    line 23 of file sampartb.bib
:
: % pages = "455-460",
(Error may have been on previous line)
I'm skipping whatever remains of this entry
Warning--missing year in eM57
Warning--missing pages in eM57
(There was 1 error message)
```

Recall that $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ ignores field names it cannot recognize. So changing the field name pages, for example to pages-comment, does not give an error message. However, doing so removes a required field, so you get the warning message

Warning--missing pages in eM57

Rule ■ BibTEX field names

Do not abbreviate field names.

For instance, if you abbreviate volume to vol, as in

```
@ARTICLE{eM57,
    author = "Ernest T. Moynahan",
    title = "On a Problem of {M. Stone}",
    journal = "Acta Math. Acad. Sci. Hungar.",
    pages = "455-460",
    vol = 8,
    year = 1957,
    }
```

the vol field is simply ignored. This entry is typeset as
3. Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. (1957), 455-460.
instead of

Γ

3. Ernest T. Moynahan, On a problem of M. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
\square

Rule ■ $\mathrm{BIBT}_{\mathbf{E}} \mathrm{X}$ field terminations

Make sure that every field of an entry, except possibly the last, is terminated with a comma.

If you drop a comma before a field, you get an error message such as

```
I was expecting a ',' or a ')'
    line 6 of file sampartb.bib
    :
    : year = 1968,
(Error may have been on previous line)
I'm skipping whatever remains of this entry
Warning--missing year in gM68
```


Rule ■ BibT $_{E} X$ field value terminations

Make sure that the field value is properly terminated.

You should be careful not to drop a double quote or brace. If you drop the closing quote on line 11 of the bib file,

```
title = "General Lattice Theory
```

you get the error message

```
I was expecting a ',' or a '}'
                                    line 12 of file sampartb.bib
    : edition = "
    : Expanded and Revised",
I'm skipping whatever remains of this entry
Warning--missing publisher in fR82
Warning--missing year in fR82
```

If, instead, you drop the opening double quote in the same line, you get the error message

```
Warning--string name "general" is undefined
--line 11 of file sampartb.bib
I was expecting a ',' or a '}'
    line 11 of file sampartb.bib
    : title = general
: Lattice Theory",
I'm skipping whatever remains of this entry
Warning--missing title in fR82
Warning--missing publisher in fR82
Warning--missing year in fR82
(There was 1 error message)
```

BibTEX assumed that general was an abbreviation, since it was not preceded by a ". The obvious conclusion is that you have to be very careful about typing your bibliographic entries for BIBTEX. If you have access to special tools for maintaining your bibliographic data, use them. Otherwise, refer to the template.bib file that contains templates of often-used entry types.

16.2.5 Submitting an article

If you submit an article to a journal that provides you with a $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ style file, then you can submit the article and the $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database file, pared down of course. If this is not the case, create the bbl file with amsplain.bst and copy and paste the content into the thebibliography environment in the article. Then the journal's editor can edit the bibliography.

16.3 Concluding comments

There is a lot more to $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ than what has been covered in this chapter. For example, BIBTEX's algorithm to alphabetize names is fairly complicated. Some names create additional difficulties. Where should John von Neumann be placed, under the "v"-s or the " N "-s? It depends on the style. How do we handle names where the first word is the family name, as in Ho Chi Minh or Grätzer György? Again, it depends on the style.

Oren Patashnik's BIBTEXing [52] has many helpful hints. It includes a clever hack to order entries correctly even when the style does not do so. Chapter 13 of The $L^{A} T_{E} X$ Companion, 2nd edition [46] has a long discussion of BibTEX. It also contains a long list of styles.

There are many tools to make BibTEXing easier. BibDesk for the Mac is an excellent graphical BibTEX-bibliography manager. For Windows, there is BibTexMng. For unix, there is pybibliographer and if you are an Emacs user, there is Ebib. Written in

Java, so available on most platforms, is JBibtexManager.
There are many $\mathrm{BIbTE}_{\mathrm{E}} \mathrm{X}$ databases. The largest one may be "The Collection of Computer Science Bibliographies" with more than two million references.

You can easily build your own mathematical databases with MathSciNet from the AMS. Do a search. When the result page comes up, go to the pull down menu next to Batch Download and select Citations (BibTeX). Now you can check mark the items you want by clicking on the little squares and then click on Retrieve Marked next to the pull down menu or click on Retrieve First 50. For the latter to work well, before your search, click on the Preferences button and click on the circle next to 50 , so you get at most 50 items per result page. Then Retrieve First 50 retrieves them all.

Finally, after many years of development, the AMS released amsrefs, the kid brother of BIBTEX, at its annual meeting in January 2002. The presentation was made by Michael Downes, who designed and coded the package. I was very excited to hear his lecture-bibliographic management was the last block needed to complete the rebuilding of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. It turned out that amsrefs is not simply a $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ replacement. It has a number of very important new features.

1. You can, with amsrefs, enter the marked up bibliographic entries into the document. This means that the document class of the journal publishing the paper can format your bibliography.
2. amsrefs is a ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ package. Therefore, you do not have to learn (another) esoteric language to control the formatting of your bibliography. Developing a format for a journal is very easy.
3. The bibliographic data files are also $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ files, so you can print them within $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, making it easy to maintain them.
After Michael Downes passed away, David Jones took over the project, and released version 2.0 in June of 2004.

Unfortunately, unlike the $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ and its bbl file, amsrefs directly creates the typeset file. So if the journal you want to submit your article to does not have an amsrefs style file-and today only the AMS journals have them-then you have to manually convert the amsrefs entries into the format the journal would accept. There is no option to set in amsrefs to produce a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ source file for the bibliographic entries. Therefore, unless you know that you intend to submit to an AMS journal-and you know that it will accept your article for publication-you should not use amsrefs.

There is a second obstacle. There is no BibDesk or BibTexMng for amsrefs. But I believe that if amsrefs overcomes the first obstacle, then the second obstacle would resolve itself fast.

There is a new development which shares some of Michael Downes' goals. It is Philipp Lehman's biblatex package, now in version 0.6. It works with (some) BibTEX databases and uses $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ to format the bibliography.

MakeIndex

Pehong Chen's MakeIndex application, described in Pehong Chen and Michael A. Harrison's Index preparation and processing [10], helps ETEX users create long indexes. For short indexes, you can easily do without it (see Section 10.5.2).

In Section 17.1, we show you by an example how to prepare an article for indexing. We introduce formally the index commands in Section 17.2. In Section 17.3, we describe how $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and MakeIndex process the index entries. The rules are stated in Section 17.4.

Multiple indexes are almost as easy as single indexes. They are described in Section 17.5. We conclude with glossaries in Section 17.6.

Indexing is a difficult task. For an extensive discussion on how to create a useful index, consult The Chicago Manual of Style, 15th edition [11].

17.1 Preparing the document

LATEX provides the theindex environment (see Section 10.5.2). Within this environment, it provides the - , \subitem, and \subsubitem commands to typeset entries, subentries, and subsubentries, respectively, and the \indexspace command for adding vertical space between alphabetical blocks, see Figure 17.1 for an example.

The makeidx package provides the \index command for specifying the index entry at a particular point in the document, which becomes a page reference for the entry in the typeset index.

Making an index entry with MakeIndex is easy. You simply place the index commands in your source file, and then let $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and MakeIndex do the work of gathering the entries and the page numbers for the entries, sorting them, and formatting the typeset index.
There are three steps:

1. In the preamble of your eratorname{ETEX}\)document,includetheline\makeindexIfyoudonotuseanAMSdocumentclass,includethetwolines\usepackage\{makeidx\}\makeindexundefined
2. Type the line
\printindex
at the point in your document where you want the index to appear, usually as part of the back matter (see Section 10.5).
3. Mark all entries in your document with \index commands.
We illustrate this procedure with the intrarti.tex article, which modifies the article intrart.tex by inserting a number of index entries (both intrart.tex and intrarti.tex are in the samples folder; see page 4).

We now add a dozen \index commands to intrart.tex.

Command 1

Retype the line
\begin\{theorem\} }
to read
\begin\{theorem\}\index\{Main Theorem\} }
Commands 2 and 3
Type the commands

```
\index{pistar@$\Pi^{*}$ construction}%
\index{Main Theorem!exposition|(}%
```

after the line

\section\{The $\$ \backslash \mathrm{Pi}^{\wedge}$ 〔*\} $\$$ construction\}\label\{S:P*\}

Command 4

Retype the line
See also Ernest~T. Moynahan~\cite\{eM57a\}.
as follows:
See also Ernest ${ }^{\sim}$ T.
\index\{Moynahan, Ernest ${ }^{\sim}$ T. \}\%
Moynahan~\cite\{eM57a\}.
Commands 5 to 7

Type the three index items

```
\index{lattice|textbf}%
\index{lattice!distributive}%
\index{lattice!distributive!complete}%
```

before the line
\begin\{theorem\}\label\{T:P*\} }

Command 8

Type
\index\{Main Theorem!expositionl)\}
after the line
hence $\$ \backslash$ Theta $=\backslash i o t a \$$.

Command 9

Retype the line
\bibitem\{sF90\}
as follows:
\bibitem\{sF90\}\index\{Foo, Soo-Key\}\%
Command 10
Retype the line
\bibitem\{gM68\}
as follows:
\bibitem\{gM68\}\index\{Menuhin, George~A.\}\%

Command 11

Retype the line
\bibitem\{eM57\}
as follows:
\bibitem\{eM57\}\index\{Moynahan, Ernest~T.\}\%

Command 12

Retype the line
\bibitem\{eM57a\}
as follows:
\bibitem\{eM57a\}\index\{Moynahan, Ernest~T.\}\%
These \index commands produce the index for the intrarti.tex article shown in Figure 17.1. Notice that although you typed 12 index commands, only 11 entries appear in the index. The last two entries for Moynahan (commands 11 and 12) occur on the same typeset page, so only one page number shows up in the index.

Index

Foo, Soo-Key, 2
lattice, 1
distributive, 1 complete, 1

Main Theorem, 1
exposition, 1-2
Menuhin, George A., 2
Moynahan, Ernest T., 1, 2
Π^{*} construction, 1
Figure 17.1: A simple index.
The showidx package (see Section 12.3) lists all the index items of a page in a top corner on the margin. The top of the first page of the typeset intrarti.tex is shown in Figure 17.2.

Main Theorem pistar@\$"Pi^*\$ construction

 A CONSTRUCTION OF COMPLETE-SIMPLE

 A CONSTRUCTION OF COMPLETE-SIMPLE DISTRIBUTIVE LATTICES DISTRIBUTIVE LATTICES
 GEORGE A. MENUHIN
 Main
 Theorem!exposition-(Moynahan, Ernest ${ }^{\sim}$ T lattice-textbf attice!distributive lattice!distributive!complete

Abstract. In this note, we prove that there exist complete-simple distributive lattices, that is, complete distributive lattices with only two complete congruences

Figure 17.2: Using showidx.

17.2 Index commands

There are a few major forms of \index commands. They are discussed in this section, illustrated by the commands shown in Section 17.1.

Simple \backslash index commands

The index entry
Γ
Foo, Soo-Key, 2
L
was created by command 9 ,
\index\{Foo, Soo-Key\}
This entry is an example of the simplest form of an index command:
\index\{entry\}
The entry
lattice, 2
\square
was created as command 5,
\index\{lattice|textbf\}
Ignore, for the time being, the Itextbf part. This entry has a subentry,
lattice, 2
distributive, 2
L
which was created by command 6 ,

```
\index{lattice!distributive}
```

There is also a subsubentry,

```
\Gamma
```

 lattice, 2
 distributive, 2
 complete, 2
 L
which was created by command 7 ,

```
\index{lattice!distributive!complete}
```

The form of the \index command for subentries is

```
\index{entry!subentry}
```

and for subsubentries it is

```
\index{entry!subentry!subsubentry}
```


Modifiers

Command 5

```
\index{lattice|textbf}
```

produces a bold page number in the entry lattice.
The command whose name follows the symbol \| (in this case, the command name is textbf) is applied to the page number. For instance, if you want a large bold page number, then define the command \backslash LargeBold as

\newcommand\{\LargeBoldB\}[1]\{\textbf\{\Large \#1\}\}

and type the \index command as
\index\{entry |LargeBold\}
You can also modify \index commands to indicate page ranges:

Main Theorem, 1
exposition, 1-2

The latter index entry has a page range. It was created with commands 3 and 8:

```
\index{Main Theorem!exposition|(}
\index{Main Theorem!exposition|)}
```

Separate an entry from its modifier with I, open the page range with (, and close it with).

Modifiers can also be combined. The index commands
\index\{Main Theorem!expositionl(textbf\}
\index\{Main Theorem!expositionl)textbf\}
produce a bold page range.

Sorting control

Observe the \index command
\index\{pistar@\$\Pi^\{*\}\$ construction\}
This produces the entry

Γ

Π^{*} construction, 1
L
To place this entry in the correct place in the index, use a sort key. The general form of an \index command with a sort key is
\index\{sortkey@entry\}
In this example, the sortkey is pistar. When the entries are sorted, the sortkey is used to sort the entry. A few typical examples follow:

Example 1 An \index command for G.I. Žitomirskiĭ,
\index\{Zitomirskii@\v\{Z\}itomirski\u\{\i\}, G.I.\}
sorts Žitomirskiĭ with the Z entries.
If you used the command
\index\{\v\{Z\}itomirski\u\{\i\}, G.I.\}
Žitomirskiĭ would be sorted with the v's.
Example 2 An \index command for the Örmester lemma,
\index\{Ormester@ $\backslash H\{0\}$ rmester lemma\}
would sort Örmester lemma with the O entries.
If you used the command
\index $\{\backslash H\{0\}$ rmester lemma\}
Őrmester lemma would be sorted with the H's.

Example 3 An \index command for truncated lattice,
\index\{truncated lattice@\emph\{truncated\} lattice\}
sorts truncated lattice with the t entries.
If you use the command
\index\{\emph\{truncated\} lattice\}
this would sort truncated lattice with the e's.
Example 4 We want to place the symbol Truncat f, typed as \backslash Trunc f (see Section 7.6.2) in the index, sorted as Trunc.
\index\{\$\Trunc f\$\}
would place Truncat f near the beginning of the index, sorted with the $\$$ symbol. If you use the command
\index\{Trunc@\$\Trunc f\$\}
this would sort Truncat f with the T's.

Sorting control and subentries

If you want to place a subentry under an entry with a sort key, you must include the sort key part of the entry as well:
\index\{sortkey@entry!subentry\}
For instance,

```
\index{Zitomirskii@\v{Z}itomirski\u{\i}, G.I.!education}
```

You can also use a sort key for subentries (and subsubentries), such as

```
\index{lattice!weakly distributive@
    \emph{weakly} distributive}
```

or, a more complicated example,
\index\{Zitomirskii@\v\{Z\}itomirski\u\{\i\}, G.I.!elementary education@\textbf\{elementary\} education\}

Special characters

Since the !, @, and | characters have special meanings within an \index command, you need to quote those characters if you want them to appear as themselves. MakeIndex uses the double quote character (") for this purpose: "!, "@, and " | .

Because this usage makes the double quote a special character itself, it also has to be quoted if you need to use it in an \index command: " ".

Example 1 To produce the entry Start here!, type the \index command as

```
\index{Start here"!}
```

Example 2 To produce the entry @ symbol, type the \index command as

```
\index{"@ symbol}
```

Example 3 To produce the entry $|A|$, type the \backslash index command as

```
\index{"|A"|@$"|A"|$}
```


Cross-references

It is easy to make a cross-reference to another index entry. For instance, to list distributive lattice by cross-referencing it to lattice, distributive, the command is
\index\{distributive lattice|seeonly\{lattice, distributive\}\}
which produces the entry

Γ

distributive lattice, see lattice, distributive

For non-AMS document classes, seeonly should be see.
A command of this form can be placed anywhere in the document.

Tip Put all cross-referencing \index commands in one place in your document, so they are easy to keep track of.

Placement of \backslash index commands

The principle is simple.

Rule ■ Placement of \backslash index commands

An \index command should:

1. Reference the correct page
2. Not introduce unwanted space into the typeset document
For example, you should avoid placing \index commands as shown here:
Let \$L\$ be a distributive lattice
\index\{lattice\}
\index\{distributive lattice\}
that is strongly complete.
This placement may result in unwanted extra space following the word lattice:

Γ

Let L be a distributive lattice that is strongly complete.
\qquad
Note the placement of the \index commands in Section 17.1. In each case I have placed them as close to the referenced item as I could. If you place an index entry on a separate line, use \% to comment out unwanted spaces including the end-of-line character (see Section 5.5.1), as in

Let $\$ \mathrm{~L} \$$ be a distributive lattice
\index\{lattice\}\%
\index\{distributive lattice\}\%
that is strongly complete.
Read also Section 18.5 on page breaks and index entries.

Listing the forms of the \backslash index command

We have discussed the following forms:

```
\index\{entry\}
```

\index\{entry!subentry\}
\index\{entry!subentry!subsubentry\}
\index\{entry|modifier\}
\index\{entry|open/close modifier\}
\index\{sortkey@entry\}

```
\index\{sortkey@entry!subentry\}
\index\{sortkey@entry!subsortkey@subentry\}
```

Of course, more combinations are possible; the following may be the longest form:
\index\{sortkey@entry!subsortkey@subentry\%
!subsubsortkey@subsubentry|open/close modifier\}

17.3 Processing the index entries

Once you are satisfied with the \index commands, the index is ready to be created.
Step 1 Typeset intrarti.tex (see Figure 17.3).
Step 2 Run the MakeIndex application on intrarti.idx (see Figure 17.4).
Step 3 Typeset intrarti.tex again.
You find the index on page 3 of the typeset document.
Let us look at this process in detail. In step 1 (see Figure 17.3), ATEX creates the intrarti.idx file:
\indexentry\{Main Theorem\}\{1\}
\indexentry\{pistar@\$\Pi^\{*\}\$ construction\}\{1\}
\indexentry\{Main Theorem!exposition| (\}\{1\}
\indexentry\{Moynahan, Ernest~T.\}\{1\}
\indexentry\{lattice|textbf\}\{1\}
\indexentry\{lattice!distributive\}\{1\}
\indexentry\{lattice!distributive!complete\}\{1\}
\indexentry\{Main Theorem!expositionl)\}\{2\}
\indexentry\{Foo, Soo-Key\}\{2\}
\indexentry\{Menuhin, George~A.\}\{2\}
\indexentry\{Moynahan, Ernest ${ }^{\sim}$ T.\}\{2\}
\indexentry\{Moynahan, Ernest ${ }^{\sim}$ T.\}\{2\}
In step 2 (see Figure 17.4), MakeIndex processes intrarti.idx and creates the index file intrarti.ind, which contains a theindex environment with all the index entries:
\begin\{theindex\} }
- Foo, Soo-Key, 2
\indexspace

Figure 17.3: Using MakeIndex, step 1.

Figure 17.4: Using MakeIndex, step 2.

```
\item lattice, \textbf{1}
    \subitem distributive, 1
        \subsubitem complete, 1
        \indexspace
\item Main Theorem, 1
    \subitem exposition, 1--2
\item Menuhin, George~A., 2
```

```
\item Moynahan, Ernest~T., 1, 2
\indexspace
\item $\Pi^{*}$ construction, 1
\end{theindex}
```

The \backslash printindex command reads intrarti.ind during the next typesetting cycle.
MakeIndex also produces the index log file intrarti.ilg:

```
This is makeindex, version 2.14 [02-Oct-2002]
(kpathsea + Thai support).
Scanning input file intrarti.idx....done
(12 entries accepted, 0 rejected).
Sorting entries....done (43 comparisons).
Generating output file intrarti.ind....done
(22 lines written, O warnings).
Output written in intrarti.ind.
Transcript written in intrarti.ilg.
```

It is important to understand that in step 1, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ does not process the index entries, it simply writes the arguments of the \index commands in the source file to the idx file as arguments of \indexentry commands verbatim (that is, with no change). MakeIndex then processes the idx file by removing the double quote marks for the special characters, sorting the entries, and collating the page numbers. The resulting ind file is a normal $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ source file (you can edit it, if necessary) that is included in the original document by the \backslash printindex command the next time you run $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

In Step 2, we run the MakeIndex application on intrarti.idx. How we do this depends on the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ installation you have. In UNIX installations, you type

MakeIndex intrarti

at the command line. In newer user interfaces, MakeIndex is represented by an icon, and you drop intrarti.idx into it. In modern installations, your editor also runs MakeIndex. In WinEdt (see Section A.1.2), run MakeIndex by clicking on the MakeIndex button. In TeXShop (see Section A.2.1), change the LaTeX button to MakeIndex with Typeset>MakeIndex and click on the Typeset button. Now change the MakeIndex button back to LaTeX with Typeset>LaTeX. Click on the Typeset button, and you have the typeset article with the index.

17.4 Rules

There are some simple rules to keep in mind when entering index items.

Rule ■ Spaces in \index

Do not leave unnecessary spaces in the argument of an \index command.
\index\{item\}, \index\{பitem\}, and $\backslash i n d e x\{i t e m\}$
produces three different entries.

There are options that instruct MakeIndex to ignore such spaces, but you are better off typing the \index commands correctly in the first place.

Rule ■ Spacing rules for MakeIndex

LTEX's text spacing rules (Section 5.2.1) do not apply. MakeIndex does not follow these rules when it sorts the index items. While ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ ignores spaces, MakeIndex does not.

Rule ■ Sort keys

In \index\{sortkey@item\}, the sortkey is both space and case sensitive.

For instance,
\index\{alpha@\$\alpha\$\}
\index\{Alpha@\$\alpha\$\}
\index\{ALPHA@\$\alpha\$\}
represent three different items.

Rule ■ Braces

In every entry, the braces must be balanced.

Normally, balancing braces is not a problem. The braces within a math formula or a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ expression should always be balanced. However, the \index command that creates the entry for \{ with the sort key leftbrace cannot be typed as
\index\{@
{\} }
because $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ would give the error message

```
Runaway argument?
{leftbrace@\{}
! Paragraph ended before \@wrindex was complete.
```

There are many ways to correct this \index command. Perhaps the simplest is to define
\newcommand\{\printleftbrace\}\{
{\}\} }
and rewrite the \index command
\index\{@\printleftbrace\}
This produces the entry

Γ

\{, 1

There is, of course, a lot more to MakeIndex than what we have discussed in this short introduction, but what we have covered here should do for most documents. See Pehong Chen and Michael A. Harrison's Index preparation and processing [10] for more detail. Chapter 12 of The LATEX Companion, 2nd edition [46] covers MakeIndex in great detail, including the customization of indexes.

17.5 Multiple indexes

To split your index file into two parts, the first with all names and the second with the other entries, include the following three lines in the preamble:

```
\usepackage{amsmidx}
\makeindex{names}
\makeindex{others}
```

For the package amsmidx, see Section 11.6.
Now enter each index command in the form

```
\index{names}{}
```

or
\index\{others\}\{\}
So you would enter
\index\{Moynahan, Ernest~T.\}
as
\index\{names\}\{Moynahan, Ernest ${ }^{\sim}$ T.\}
and

```
\index{Main Theorem}
```

as
\index\{others\} \{Main Theorem\}
Where you want the two indexes to appear in the typeset article, enter the commands

```
\Printindex{names}{Contributors}
```

\backslash Printindex\{others\}\{Index\}

Of course, instead of Contributors and Index you may enter any titles for the two indexes.

17.6 Glossary

Using the glossary commands is very similar to using the corresponding index commands.

Instead of the \index and \makeindex commands, use the \glossary and \makeglossary commands, respectively. Glossary entries are written in the glo file, which corresponds to the idx file. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ gives you no further assistance in making a glossary file. There is no \printglossary command, theglossary environment, or MakeGlossary application. There is, however, Thomas Henlich's makeglos package (see Section E.1).

17.7 Concluding comments

Style files are available in a very limited form also for MakeIndex. Google

```
makeindex style
```

for an up-to-date listing.
Indexing is a very complex process, so it is not surprising that there are many index packages available. CTAN lists a number of them in the index directory. The best known is xindy, described in detail in The ${ }^{A} T T_{E} X$ Companion, 2nd edition [46].

CHAPTER

Books in LATEX

Since the introduction of ETEX 2, the visual quality of articles published in mathematical journals has improved dramatically. Unfortunately, the same cannot be said of books published using IATEX. A record number of very ugly books have appeared.

It is easy to understand why. While amsart has been designed to produce highquality printed output, the standard book document classes do not produce attractive books without additional work.
${ }^{\mathrm{LT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ provides the book and the amsbook document classes to serve as foundations for well-designed books. Better quality books have to use document classes designed by professionals. We provide some sample pages from a book using Springer's svmono.cls document class. We briefly discuss logical and visual design in Section 4.3.2.

So this chapter is not about how to produce a finished book using IATEX. Our goal is much more modest, how to prepare a book manuscript for your publisher. In Section 18.1 we describe the book document classes book and amsbook. The table of contents and lists of figures and tables are discussed in Section 18.2.

Typesetting a book involves dozens of files. Section 18.3 .3 gives some tips on how to organize them. Section 18.4 covers logical design. Section 18.5 deals with the final preparation of your edited manuscript for your publisher. Finally, Section 18.6
suggests a few more things to do if you typeset your book yourself.

18.1 Book document classes

In this section, we briefly discuss the way in which book and amsbook, the two standard book document classes, differ from the corresponding article document classes. We also show a few pages from a book that was typeset with Springer Verlag's document class for monographs: svmono.cls.

18.1.1 Sectioning

Book document classes have chapters, invoked with the \chapter command and parts, invoked with \part. The \part command is generally used to group chapters in longer documents, for instance in this book. Parts have no effect on the numbering of chapters, sections, and so on, so Chapter 1 of Part I is not numbered as I. 1 but as 1.

Both \chapter and \part take a title as an argument, but the \chapter command also has an optional argument:
\chapter[short_title]\{title\}
The optional short_title argument is used in the running head. You may need to protect any fragile commands in title and short_title with the \protect command (see Section 5.3.3).

Here is the whole hierarchy:

```
\part
```

\chapter

\section

\subsection

 \subsubsection
 \paragraph
 \subparagraph
 Book document classes, as a rule, do not number subsubsections or any of the sectioning divisions below that level.

Equations in chapters

By default, equations are numbered from 1 within chapters. So in Chapter 1 as well as in Chapter 3, the equations are numbered (1), (2), and so forth. If you have the
\numberwithin\{equation\}\{chapter\}
command in the preamble, then equations in Chapter 2 are numbered as (2.1), (2.2), and so on.

18.1.2 Division of the body

The book document classes formalize the division of the body into three parts.

Front matter The material that appears in the front of the document, including the title pages (normally four), table of contents, preface, introduction, and so on. ${ }^{\text {ETEX }} \mathrm{E}$ numbers these pages using roman numerals. The front matter is introduced with the \backslash frontmatter command.

Main matter The main part of the book, including the appendices if any. Page numbering starts from 1 using arabic numerals. The main matter is introduced with the \mainmatter command.

Back matter Material that appears in the back of the book, including the bibliography, index, and various other sections, such as the colophon, afterword, and so on. The back matter is introduced with the \backslash backmatter command.

For the book document class-and the document classes built on it-in the front and back matter, the \chapter command does not produce a chapter number but the title is listed in the table of contents. So you can start your introduction with

```
\chapter{Introduction}
```

Within such a chapter, you should use the $*$-ed forms of the sectioning commands \section, \subsection, and so on, otherwise you have sections with numbers such as 0.1.

In the main matter, the \appendix command marks the beginning of the appendices. Each subsequent chapter becomes a new appendix. For example,

```
\appendix
\chapter{A proof of the Main Theorem}\label{A:Mainproof}
```

produces an appendix with the given title.
Note that appendices may be labeled and cross-referenced. In Appendix A, sections are numbered A.1, A.2, and so on, subsections in A. 1 are numbered A.1.1, A.1.2, and so on. The precise form these numbers take depends, of course, on the document class, packages, and user-specific changes (see Section 15.5.1).

See Section 18.3.1 for a detailed example.
For the amsbook document class-and the document classes built on it-the \chapter and \chapter* commands always produce a title listed in the table of contents.

The following two questions are frequently asked:
My book has only one appendix. How can I get it to be called just "Appendix", not "Appendix A"?

The single appendix in my book is being labeled "Appendix A". How can I change this to just "Appendix"? This appendix has a title, so the answer to the preceding question doesn't apply.
These questions are answered in the author FAQ of the AMS, go to
http://www.ams.org/authors/author-faq.html

18.1.3 Document class options

The options and defaults for the book document classes are the same as those of other document classes (see Sections 11.5 and 12.1.2) with a few exceptions.

Two-sided printing

$$
\begin{array}{ll}
\text { Options: } \begin{array}{l}
\text { twoside default } \\
\text { oneside }
\end{array}
\end{array}
$$

The twoside option formats the output for printing on both sides of a page.

Titlepage

Options: titlepage default
notitlepage
The titlepage option creates a separate title page. The notitlepage option creates no separate pages.

Chapter start

Options: openright default openany
A chapter always starts on a new page.
The book document class-and the document classes built on it-use the option openright to start each chapter on an odd page, while the option openany starts each chapter on the first available new page. If you use the default option, end each chapter with the command

\cleardoublepage

Then if a chapter ends on an odd page, a blank page is added with no header or page number. The \cleardoublepage command is correctly coded if you use amsbook. Otherwise, use the package cleardoublepage.sty (in the samples folder).

The amsbook document class-and the document classes built on it-automatically clears to a right-hand page and leaves a totally blank page if needed.

18.1.4 Title pages

The book document class supports the commands: \title, \author, \date, and \backslash maketitle (see Section 12.1.1). The amsbook document class supports the same commands as amsart (see Section 11.2).

You can design your own title page within the titlepage environment, which does not require the use of the \maketitle command. Title pages for books, of course, should be created by a book designer for the publisher.

18.1.5 Springer's document class for monographs

We choose svmono.cls, Springer's document class for monographs, to demonstrate the sophisticated appearance of a book typeset with a professionally designed document class. On the next three pages, I display the title page, the first Table of Contents page, and the first page of Chapter 1 of Claudio Procesi's book on Lie groups.

Claudio Procesi

Università di Roma La Sapienza

Lie Groups

An Approach through Invariants and Representations

Contents

Introduction xix
Conventional Notations xxiii
1 General Methods and Ideas 1
1 Groups and Their Actions 1
1.1 Symmetric Group 1
1.2 Group Actions 2
2 Orbits, Invariants and Equivariant Maps 4
2.1 Orbits 4
2.2 Stabilizer 5
2.3 Invariants 7
2.4 Basic Constructions 7
2.5 Permutation Representations 8
2.6 Invariant Functions 10
2.7 Commuting Actions 11
3 Linear Actions, Groups of Automorphisms, Commuting Groups 11
3.1 Linear Actions 11
3.2 The Group Algebra 13
3.3 Actions on Polynomials 15
3.4 Invariant Polynomials 16
3.5 Commuting Linear Actions 17
2 Symmetric Functions 19
1 Symmetric Functions 19
1.1 Elementary Symmetric Functions 19
1.2 Symmetric Polynomials 21
2 Resultant, Discriminant, Bézoutiant 22
2.1 Polynomials and Roots 22

1

General Methods and Ideas

Abstract

Summary. In this chapter we will develop the formal language and some general methods and theorems. To some extent the reader is advised not to read it too systematically since most of the interesting examples will appear only in the next chapters. The exposition here is quite far from the classical point of view since we are forced to establish the language in a rather thin general setting. Hopefully this will be repaid in the chapters in which we will treat the interesting results of Invariant Theory.

1 Groups and Their Actions

1.1 Symmetric Group

In our treatment groups will always appear as transformation groups, the main point being that, given a set X, the set of all bijective mappings of X into X is a group under composition. We will denote this group $S(X)$ and call it the symmetric group of X.

In practice, the full symmetric group is used only for X a finite set. In this case it is usually more convenient to identify X with the discrete interval $\{1, \ldots, n\}$ formed by the first n integers (for a given value of n). The corresponding symmetric group has $n!$ elements and it is denoted by S_{n}. Its elements are called permutations.

In general, the groups which appear are subgroups of the full symmetric group, defined by special properties of the set X arising from some extra structure (such as from a topology or the structure of a linear space, etc.). The groups of interest to us will usually be symmetry groups of the structure under consideration. To illustrate this concept we start with a definition:

Definition. A partition of a set X is a family of nonempty disjoint subsets A_{i} such that $X=\cup_{i} A_{i}$.

A partition of a number n is a (non-increasing) sequence of positive numbers:

$$
m_{1} \geq m_{2} \geq \cdots \geq m_{k}>0 \text { with } \sum_{j=1}^{k} m_{j}=n
$$

18.2 Tables of contents, lists of tables and figures

A long document, as a rule, has a table of contents. It may also include a list of figures and a list of tables.

18.2.1 Tables of contents

What goes into the table of contents?
For the amsbook document class-and the document classes built on it-all titles, not the short titles, of the sectioning commands, whether *-ed or not, subject only to the value of the tocdepth counter, as described in the last subsection of Section 15.5.1. For instance, if tocdepth is set to 2 , the default, then the titles of chapters, sections, and subsections are included in the table of contents, and subsubsections are excluded.

This leaves us with the problem, what do we do if the title is too long? You cannot break the line with $\backslash \backslash$, because this would the appear in table of contents. The AMS coded the following solution: enter the line break in the form

```
\except{toc}{\linebreak}
```

For the book document class-and the document classes built on it-the title or optional argument of the sectioning commands, subject to the value of the tocdepth counter, with the following exceptions:
 - In Section 10.4.1 we discuss the *-ed versions of sectioning commands. They are excluded from the table of contents.
 - If the sectioning command has a short title, then it is the short title that is utilized.

The example in Section 11.2 shows why this is important. If you have $\backslash \backslash$ in the title, you must have a short title without it, otherwise the linebreak would show up in the running head and the table of contents.

When you typeset your document with a table of contents, $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ creates a file with the toc extension. The next time the document is typeset, the toc file is typeset too and included in your typeset document at the point where the command
\tableof contents
appears in the source file, normally in the front matter. If your source file is named myart.tex, the toc file is named myart.toc. This file lists all the sectioning units as well as their titles and page numbers.

If you already have a toc file, the \tableof contents command typesets a table of contents using the previously created toc file and creates a new toc file.

LTEX adds a line to the table of contents, formatted like a section title, if you include the command

```
\addcontentsline{toc}{section}{text_to_be_added}
```

in your source file. There are three arguments:

1. The first argument informs $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ that a line, the third argument, should be added to the toc file.
2. The second argument specifies how the line should be formatted in the table of contents. In our example, the second argument is section, so the line is formatted as a section title in the table of contents. The second argument must be the name of a sectioning command.
3. The third argument is the text to be added.
You can add an unformatted line to the table of contents with the command
\addtocontents\{toc\}\{text_to_be_added\}
Such a command can also be used to add vertical spaces into the table of contents. For instance, if you want to add some vertical space before a part, you should insert the following line before the sectioning command for the part:
\addtocontents\{toc\}\{\protect\vspace\{10pt\}\}
The toc file is easy to read. The following are typical lines from the table of contents file for a document using the book document class:

```
\contentsline{section}{\numberline {5-4.}Top matter}{119}
```

\contentsline\{subsection\}\{\numberline \{5-4.1.\}
Article info\}\{119\}
\contentsline \{subsection\}\{\numberline \{5-4.2.\}
Author info\}\{121\}

Section 15.5.1 explains how you can specify which levels of sectioning appear in the table of contents. Section 2.3 of The $L^{L T} T_{E} X$ Companion, 2nd edition [46] lists the style parameters for the table of contents. It also shows you how to define new toc-like files and use multiple tables of contents in a single document, for instance, adding a mini table of contents for each chapter.

Tip You may have to typeset the document three times to create the table of contents and set the numbering of the rest of the document right.

1. The first typesetting creates the toc file.
2. The second inserts the table of contents with the old page numbers into the typeset document, re-records in the aux file the page numbers, which may have changed as a result of the insertion, and cross-references in the aux file, and generates a new toc file with the correct page numbers.
3. The third typesetting uses these new aux and toc files to typeset the document correctly and creates a new toc file.
Fragile commands in a movable argument, such as a section (short) title, must be \backslash protect-ed (see Section 5.3.3). Here is a simple example using the table of contents. If the document contains the \section command

```
\section{The function \( f(x^{2}) \)}
```

the section title is stored in the toc file as

```
\contentsline {section}{\numberline
{1}The function\relax $ f(x^{2}) \relax \GenericError { }
{LaTeX Error: Bad math environment delimiter}{Your
command was ignored.\MessageBreak Type I <command>
<return> to replace it with another command,\MessageBreak
or <return> to continue without it.}}{1}
```

and the \log file contains the message

```
! LaTeX Error: Bad math environment delimiter.
l.1 ...continue without it.}}{1}
```

Error messages usually refer to a line in the source file, but in this case the error message refers to a line in the toc file.

The correct form for this section title is

\section\{The function \backslash protect $\backslash\left(f\left(x^{\wedge}\{2\}\right)\right.$ protect $\left.\left.\backslash\right)\right\}$

or, even simpler,

\section\{The function $\left.\$ \mathrm{f}\left(\mathrm{x}^{\wedge}\{2\}\right) \$\right\}$

Note that this example is merely an illustration of unprotected fragile commands in movable arguments. As a rule, avoid using formulas in (sectioning) titles.

18.2.2 Lists of tables and figures

If you place a \listoftables command in the document, $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ stores information for the list of tables in a lot file. The list of tables is inserted into the body of your document at the point where the command appears, normally in the front matter, following the table of contents.

A list of figures, similar to a list of tables, can be compiled with the command \listoffigures. This command creates an auxiliary file with the extension lof.

An optional argument of the \caption commands in your tables and figures can replace the argument in the list of tables and figures. Typically, the optional argument is used to specify a shorter caption for the list of tables or list of figures. There are other uses. For instance, you may notice that, as a rule, captions should be terminated by periods. If in the list of tables or list of figures, your book style fills the space between the text and the page number with dots, the extra period looks bad. This problem goes away if you use the following form of the \caption command:
\caption[title]\{title.\}
There are analogs of the table of contents commands for use with tables and figures. The command
\addtocontents\{lot\}\{line_to_add\}
adds a line to the list of tables or to the list of figures with the first argument lof.

18.2.3 Exercises

For exercises, amsbook provides the xcb environment. It is used for a series of exercises at the end of a section or chapter. The argument of the environment specifies the phrase (such as Exercises) to begin the list:

```
\begin{xcb}{Exercises}
```

\begin\{enumerate\} }
- A finite lattice \(\$ \mathrm{~L} \$\) is modular if\{f\} it does not
contain a pentagon. \label\{E:pent\}
- Can the numbers of covering pairs in\label\{E:incr\}
Exercise \({ }^{\sim} \backslash r e f\{E:\) pent \(\}\) be increased? \(\backslash\) label\{E:incr\}
\end\{enumerate\} }
\end\{xcb\} }
which typesets as

Exercises

(1) A finite lattice L is modular iff it does not contain a pentagon.
(2) Can the numbers of covering pairs in Exercise 1 be increased?

18.3 Organizing the files for a book

An article is typically one tex file and maybe some EPS and/or PDF files for the illustrations. On the other hand, a book, like this one, is composed of hundreds of files. In this section, I describe how the files for this book are organized.

There are three commands that help with the organization:
\include \includeonly \graphicspath We discuss these commands in this section.

18.3.1 The folders and the master document

All the files for this book are in a folder MiL4 and in this folder the most important document is MiL4.tex, the master document.

The master document, MiL4.tex reads, in a somewhat simplified form, as follows:
document\documentclass[leqno]\{book\}\usepackage\{MiL4\}\usepackage\{makeidx\}\makeindex\usepackage\{cleardoublepage\}\includeonly\{\%frontmatter,\%intro,\%Chapter1,\%terminologyChapter18,\%books\%appA,\%install\}\begin\{document\}}\frontmatter\include\{frontmatter\}\tableofcontents\listoftables\listoffigures\include\{intro\}\%Intro\mainmatter\include\{Chapter1\}\%Settingup\include\{Chapter18\}\%writingbooksundefined

```
\appendix
\include{AppendixA}%install
\backmatter
\printindex
\end{document}
```

Some parts of the master file deserve comment, for example, the third line,
MiL4\}loadsthecommandfileMiL4.stywhichcontainsallthecommandsdefinedforthebookandthecodeforthebookstyle.Sincethebookstyleisbasedonbook.cls,inline5,weloadthemakeidxpackageandprinttheindexwith\backslashprintindex(seeSection17.1).undefined

Line 7 states
epackage\{cleardoublepage\}Thiscreatesblankpagesafterchaptersthatendonanoddpagenumber(seeSection18.1.3).Forthethree...mattercommands,seeSection18.1.2.undefined

18.3.2 Inclusion and selective inclusion

This book is pieced together by the \include commands in the master document. For example,
\include\{Chapter18\}
inserts the contents of the file Chapter18.tex, starting on a new page, as though its contents had been typed at that place in the document. The master document for this book has 29 \include commands.

Rule ■ File termination

Terminate every file you \include with an \endinput command.

If you terminate an \include-ed file with \end\{document\}, } \mathrm { ET } _ { \mathrm { E } } \mathrm { X } gives a warn- ing such as:
(\end occurred when \iftrue on line 6 was incomplete)
(\end occurred when \ifnum on line 6 was incomplete)
If you use \include commands in the master file, as in the example in Section 18.3.1, then you can use the \includeonly command for selective inclusion. The lines of the \includeonly command parallel the \include commands. Block comment all the lines of the argument of the \includeonly command, and uncomment the chapter you are working on. In the example above, I am working on this chapter.

The argument of the \includeonly command is a list of files separated by commas. If you want to typeset the whole book, uncomment all the lines.

18.3.3 Organizing your files

The MiL4 folder, containing the files of this book, contains the master document, MiL4.tex, the command file MiL4.sty, and all the tex files listed in the master document, that is, the chapters, the frontmatter, the introduction, the appendices, and of course, all the auxiliary files that IATEX creates.

This book contains about 300 illustrations in a subfolder Graphics of the folder MiL4.tex. We have to tell LTTEX to look for the illustrations in this folder. We do this with the command

```
\graphicspath{{Graphics\}}
```

in the preamble. If you have two folders, Illustr1 and Illustr2 for illustrations, the \includegraphics command takes the form

```
\graphicspath{{Illustr1\}{Illustr2\}}
```

Even if you have more than one folder for the illustrations, you must make sure that each graphics file has a unique name.

We place the \backslash graphicspath command in MiL4.sty.
In the above commands, \is appropriate for Mac and UNIX computers. For a PC, use / instead.

If you submit a dvi file, you cannot use the \graphicspath command.

18.4 Logical design

The discussion of logical and visual design in Section 4.3.2 applies to books even more than to articles. Since books are long and complex documents, errors in the logical design are much harder to correct.

Let us review some common-sense rules.

Rule 1 ■ Stick with the sectioning commands provided by the document class. Define the nonstandard structures you wish to use as environments.

Here is an example which is obviously bad:

```
\vspace{18pt}
\noindent \textbf{Theorem 1.1.}
\textit{This is bad.}
\vspace{18pt}
```

And a good way to achieve the same result:

```
\begin{theorem}\label{T:Goodtheorem}
This is a good theorem.
\end{theorem}
```

The bad example creates a number of difficulties.
 - You have to number the theorems yourself. Adding, deleting, and rearranging theorems becomes difficult and updating cross-references is even harder.
 - It is difficult to keep such constructs consistent.
 - If the publisher decides to increase the white space before and after the theorems to 20 points, finding and changing all the appropriate commands becomes a tedious and error prone task.

Rule 2 ■ Define frequently used constructs as commands.

Rather than

\textbf\{Warning! Do not exceed this amount!\}
define
\newcommand\{\important\}[1]\{\textbf\{\#1\}\}
and type your warnings as
\important\{Warning! Do not exceed this amount!\}
You or your editor can then change all the warnings to a different style with ease.

Rule 3 - Avoid text style commands.

If you use small caps for acronyms, do not type
\textsc\{ibm\}
but rather define
\newcommand\{\ibm\}\{\textsc\{ibm\}\}
and then
\ibm
or more generally
\newcommand\{\acronym\}[1]\{\textsc\{\#1\}\}
and then
\acronym\{ibm\}

Rule 4 ■ Avoid white space commands.

Occasionally, you may feel that there should be some white space separating two paragraphs, so you do the following:
paragraph 1
\medskip
paragraph 2
It would be better to define a new command, say \separate, as
\newcommand\{\separate\}\{\medskip\}
and type the previous example as
paragraph 1
\separate
paragraph 2
Now such white space can be adjusted throughout the entire document by simply redefining one command. Note that redefining \medskip itself may have unintended side effects:
 - Many environments depend on ${ }^{\mathrm{AT}} \mathrm{E}$ X's definition of \backslash medskip.
 - You may have used \medskip in other situations as well.

Here is a short list of commands you should avoid:

| \bigskip | \hfil | \hspace | \parskip | \vfill | \vspace |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \break | \hfill | \kern | \smallskip | \vglue | |
| \eject | \hglue | \medskip | \vfil | \vskip | |

18.5 Final preparations for the publisher

Throughout this book, there are a number of "don'ts". Most are practices you should avoid while writing articles. When writing a book, it is even more important not to violate these rules.

When the editors, including the copy editor, are finished with your manuscript and you have the document class designed for the book, then you can start on the final preparations.

Step 1 Eliminate all $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands.

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands, that is, Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands that are not part of ${ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ (not listed as ETEX $_{E} X$ commands in the index of this book) may interfere with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ in unexpected ways. They may also cause problems with the style file that is created for your book.

Step 2 Collect all your user-defined commands and environments together in one place, preferably in a separate command file (see Section 15.3).

Step 3 ■ Make sure that user-defined commands for notations and user-defined environments for structures are used consistently throughout your document.

This book uses the command \backslash doc for document names, so intrart is typed as \doc\{intrart\}. Of course, \texttt\{intrart\} gives the same result, but if you intermix \doc\{intrart\} and \texttt\{intrart\} commands, you lose the ability to easily change the way document names are displayed.

Step 4 - Watch out for vertical white space adding up.
 - Do not directly follow one displayed math environment with another. Multiple adjacent lines of displayed mathematics should all be in the same environment.
 - If your style file uses interparagraph spacing, avoid beginning paragraphs with displayed math.

For instance,

$x=y$
\]

```
\[
    x=z
\]
```

is wrong. Use, instead, an align or gather environment.

Step 5 ■ If possible, do not place "tall" mathematical formulas inline. All formulas that might change the interline spacing, as a rule, should be displayed.

You can find examples on pages 23 and 370. Here is one more example, double hat accents used inline: $\hat{\hat{A}}$.

Step 6 - Read the log file.
 - Watch for line-too-wide warnings (see Section 2.3).
 - Check for font substitutions (see Section 5.6.7).

If you find lines that are too wide:
 - Fix wide lines by rewording the sentence or adding optional hyphens (see Section 5.4.9).
 - Break displayed formulas so that they fit comfortably within the line.

Adobe Acrobat Professional has a preflight utility in the Advanced menu. It will check whether the PDF version of your typeset document has all the fonts it requires.

Step 7 Do not assume that gray boxes or color illustrations appear when published exactly the way that they look on your monitor or printer.

Color work requires calibration of monitors and printers. It is often best left to the experts at the publisher.

Step 8 Do not assume that the application that created your EPS files (see Section 10.4.3) can create high-quality EPS files.

Many applications can create EPS files or convert files to EPS format. Very few do it right. Ask your publisher what applications they recommend.

Font substitutions can also cause problems:
 - A font that was used in typesetting the document may not be the font you intended. Missing fonts are substituted and the substitute fonts are rarely satisfactory.
 - A special trap: Your publisher may have more, or maybe fewer, fonts than you do! As a result, the font substitutions on your publisher's system may be different from those on yours. Make sure that the fonts you use are not substituted.

18.6 If you create the PDF file for your book

Many publishers take your manuscript, prepared as described in Section 18.5, and guide it through the final steps for printing. Some books, however, are prepared by the authors for printing using a custom document class for books and submitted to the publisher as PDF files. If your book falls into this category, there are a few more things you should do before you create the final PDF file for your book.

Adjust the pages

Make sure that you are satisfied with the way the document is broken into pages by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and with the placement of the figure and table environments (see Section 10.4.3). If necessary, you should make last-minute changes to adjust page breaks. You may find the \enlargethispage command (see Section 5.7.3) very helpful at this stage. Just be sure to apply it on both facing pages.

To ensure that
 - Page numbers in the index are correct
 - \pageref references (see Section 10.4.2) are correct
 - Marginal comments (see Section 5.9.4) are properly placed
 - Tables and figures are properly placed
insert page breaks where necessary. Where pages break, add the three commands \backslash linebreak,
, and \noindent. Here is an example. The bottom of page 3 and the top of page 4 of my book General Lattice Theory [28] are shown in Figure 18.1.

Now let us assume that we have to manually do this page break because some index items attached to this paragraph generate incorrect page numbers. The paragraph split by the page break is

```
In other words, lattice theory singles out a special type
of poset for detailed investigation. To make such a
definition worthwhile, it must be shown that this class
of posets is a very useful class, that there are many
```

```
such posets in various branches of mathematics (analysis,
topology, logic, algebra, geometry, and so on), and that
a general study of these posets will lead to a better
understanding of the behavior of the examples.
This was done in the first edition of G. ~Birkhoff's
\emph{Lattice Theory} \cite{gB40}. As we go along,
we shall see many examples, most of them in the
exercises. For a general survey of lattices in
mathematics, see G. ~Birkhoff \cite{gB67} and H. ~H. 'Crapo
and G.-C.~Rota \cite{CR70}.
```

When typesetting this paragraph, ETEX inserts a page break following
This was done in the first edition of G. ${ }^{\sim}$ Birkhoff's.
So we edit four lines as follows:

```
understanding of the behavior of the examples.
This was done in the first edition of G. `Birkhoff's
\linebreak
```


\noindent \emph\{Lattice Theory\} \cite\{gB40\}. As we go
along, we shall see many examples, most of them in the

This change does not affect the appearance of the typeset page, but now pages 3 and 4

In other words, lattice theory singles out a special type of poset for detailed investigation. To make such a definition worthwhile, it must be shown that this class of posets is a very useful class, that there are many such posets in various branches of mathematics (analysis, topology, logic, algebra, geometry, and so on), and that a general study of these posets will lead to a better understanding of the behavior of the examples. This was done in the first edition of G. Birkhoff's

4 I. First Concepts

Lattice Theory [1940]. As we go along, we shall see many examples, most of them in the exercises. For a general survey of lattices in mathematics, see G. Birkhoff [1967] and H. H. Crapo and G.-C. Rota [1970].

Figure 18.1: A page break.
are separated by a
. Make sure that any \index or \label commands are moved to the appropriate half of the paragraph. Now all index commands generate the correct page numbers.

Of course, if the page break is between paragraphs, only the
 command is needed. If the break occurs in the middle of a word, use \backslash-\linebreak to add a hyphen.

This method works about 95 percent of the time. Occasionally, you have to drop either the \linebreak or the
 command.

Check for missing fonts and other defects

Open the PDF file of your book in Adobe Reader (or even better, in Adobe Acrobat Pro). Under File, go to Properties. . . and click on the Fonts tab. You will find a long list of fonts. Each one should be marked Embedded Subset.

If all your fonts are embedded, you are in good shape.
Adobe Acrobat Pro has an excellent set of utilities to check whether your PDF file is ready for printing. You find them under Advanced>Preflight.... In the Preflight window, choose Digital printing (B/W)—unless your book will print in color, in which case choose Digital printing (color). Click on Execute. Adobe Acrobat Pro will correct all the mistakes it finds in the file and presents a detailed report.

Adobe Acrobat Pro also comes to the rescue if some fonts are not embedded. In the Preflight window, expand the PDF analysis group and select List text using non-embedded fonts and click on Execute. The report will list all pages with fonts missing and if you select a page, Snap view will show you the trouble spot.

In the help system of Adobe Acrobat Pro, search for Customize Adobe PDF settings and Embed fonts using the TouchUp Text tool for detailed instructions on how to embed the missing fonts.

Other adjustments

 - Move the figure and table environments (see Section 10.4.3) physically close to where they appear in the typeset version, and change the optional argument of the figure and table environments to ! h.
 - Balance the white space on each page as necessary.
 - Generate the index only after the page breaks are fixed.

Polish the auxiliary files

 - Typeset the document one last time and then place the \nofiles command in the preamble (see Section D.3.4) to make sure that the auxiliary files are not overwritten.
 - Normally, you should not have to edit the table of contents (toc) file or the lot and lof files (see Section 18.2) and your style file should take care of the formatting. Sometimes, however, an unfortunate page break makes editing necessary. In an appropriate place, you may want to add to the text the command
\addtocontents\{toc\}\{
\}
to avoid such edits.
 - Create the index (ind) file from the new aux file, as described in Section 17.3. The Chicago Manual of Style, 15th edition [11] has a section on bad breaks, remedies, and Continued lines in the index. Break the ind file into pages. To minimize bad breaks, use the \enlargethispage command where necessary (see Section 5.7.3). Add any Continued entries.

APPENDIX

A

Installation

In case you do not already have a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ installation, in Sections A. 1 and A.2, we describe how to install $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ on your computer, a PC or a Mac. The installation is much easier if you obtain $\mathrm{T}_{\mathrm{E}} X$ Live 2007 (or later) from the $\mathrm{T}_{\mathrm{E}} X$ Users Group, tUG (see Section E.2). It contains both the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ implementations we discuss.

No installation is given for UNIX computers. The attraction of UNIX to its users is the incredibly large number of options, from the UNIX dialect, to the shell, the editor, and so on. A typical UnIX user downloads the code and compiles the system. This is obviously beyond the scope of this book. Nevertheless, TEX Live 2007 (or later) from the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Users Group supplies the compiled (binaries) of ETEX for a number of UNIX variants.

First read Chapter 1, so that in this Appendix you recognize the terminology we introduce there. I will assume that you become sufficiently familiar with your IETEX distribution to be able to perform the editing cycle with the sample documents.

A. $1 \quad L^{L T} T_{E}$ X on a PC

On a PC, most mathematicians use MiKTeX and the editor WinEdt. So it seems appropriate that we start there.

A.1.1 Installing MiKTeX

If you made a donation to MiKTeX or if you have the $\mathrm{T}_{\mathrm{E}} X$ Live 2007 (or later) from the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Users Group, then you have a CD or DVD with the MiKTeX installer. Installation then is in one step and very fast. In case you do not have this CD or DVD, we show how to install from the Internet. To begin, go to the MiKTeX home page:

```
http://miktex.org
```

and under the Download/Install click on the version you want to install. ${ }^{1}$ You are directed to the MiKTeX download page, where you click on Download MikTeX Net Installer. This takes you to a list of the download sites, called "mirrors". Choose one geographically close to you and click Download next to your pick. You are asked whether to Run or Save the installer application. Choose Save to save and now you have the setup application on your computer.

Run setup and the MiKTeX Setup Wizard should start automatically. Then click Next and choose the task, Download only. Click Next again to choose the size of the download and choose Complete MikTeX. Again you have to choose a download site, and click Next a few more times, then Start, and the download starts. When it is complete, almost 35,000 files later, click Close. Now you have the files you need in the next step.

The next task is installation. Run setup again, and up comes the Wizard. Click Next, and the task Install MikTeX is selected for you. Click Next, make sure you select Complete MikTeX. Click Next a few more times, select the default paper size, click Start, and the installation starts. When it is finished, click Close.

A.1.2 Installing WinEdt

You can download WinEdt from its Web site and use it for 30 days before you pay the license fee. We now install WinEdt from the CD you are sent after you pay the license fee. Go to License and Registration at
http://www.winedt.com
Put the WinEdt installer CD in the DVD drive. The WinEdt Setup Wizard starts automatically. After accepting the licence, click Next a few times until WinEdt is installed and then click Finish.

After installation, the
WinEdt Configuration Wizard

[^7]starts automatically. Click on the File Associations tab and click on Modify file type associations... under Current User, which is down the right side of the window, and then click OK. This gives all $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ files a lion icon and automatically associates them with WinEdt so that double clicking a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file automatically opens it in WinEdt. Clicking OK to close the Wizard.

WinEdt's claim to fame is its incredible customizability. Once you become familiar with the basic operations, you can make WinEdt behave the way you like.

A.1.3 The editing cycle

In Section 1.2 you created the work folder for your work files. Start WinEdt by double clicking the WinEdt icon and open the file note1.tex in work, see the top half of Figure A.1. Observe:
 - In the right-hand corner, under the X button, the close application button, there is a small black x . All windows of WinEdt have such an x , this is the close window button.
 - There are two rows of icons. The seventh from the right in the first row, a darkened lion's head, is the TeXify button, use it to typeset your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ file. If you are not sure what an icon represents, let the cursor hover over it, and a brief description appears.
 - A blue arrow in the left margin points at the line where the cursor is.

Click on the TeXify icon. MiKTeX typesets note1.tex and produces another file, note1.dvi. The new file is displayed by the application Yap, which was automatically installed for you with MiKTeX. Rearrange the WinEdt and Yap windows. You should get an arrangement similar to the bottom half of Figure A.1.

A.1.4 Making a mistake

WinEdt tells you if there is a mistake in your source file. To see what happens, click on the WinEdt window, and add a \backslash in line 11 of note1.tex, so that personally reads \personally. This makes \personally a command, which is a mistake (see Chapter 2). Click on the TeXify icon. We get the TeXify ... window, as in the top part of Figure A.2. At the ? prompt, type x for "exit" and press Return. ${ }^{2}$ You now see three windows, as shown in the bottom half of Figure A.2. The Yap window is mostly covered up. There is a new window, note1.log, the log window, in which the information from the TeXify . . . window is recorded. In the WinEdt window, the blue arrow line pointer on the left indicates the offending line, and the mistake, \personally, is highlighted in red. Correct the mistake by deleting
, click on TeXify, and you are back in business.

[^8]

Figure A.1: note1.tex opened in WinEdt and typeset.

Figure A.2: The mistake identified and localized (showing the log window).

A.1.5 Three productivity tools

Now we see how the three productivity tools introduced in Section 1.4 are implemented in WinEdt and MiKTeX.

Synchronization This is known as inverse search in WinEdt and MiKTeX. To set it up, open Yap, for example, by Texifying the document note1.tex. Choose the menu item View>Options>Inverse DVI Search. A list now displays the editors detected. Select WinEdt, click Apply, and click OK. You are done.
 - To jump from the typeset file in Yap to the source file in WinEdt, double click a word in the typeset file.
 - To jump from the source file to the typeset file, click on the DVI Search icon, the magnifying glass with the green leaf attached to the handle. You then jump to the typeset file, where a marker indicates the beginning of the typeset version of the source line the cursor is on.

Block comment Select a number of lines in a source document and choose the menu option Edit>Move/Fill>Insert comment. Block uncomment is done with Edit>Move/Fill>Remove comment.

Go to line This is done with Search>Go to Line...
The icons and menu options all have keyboard equivalents. For instance, Go to line is $\operatorname{Ctrl}+\mathrm{G}$ and TeXify is Ctrl+Shift and then press x .

A.1.6 An important folder

When using MikTeX, where do you put new style files and packages?
You can always place these files in your working folder. This is the simplest, but they will not be available when working with files outside that folder.

If you want these files accessible everywhere (from all folders), then make a new folder in the LocalTeXFM folder tree, say

C: \LocalTeXMF \MyStyles

and place these files there. In order for MiKTeX to find these files, you now need to update the MiKTeX FileName Database. Do this:

All Programs>MikTeX>MikTeX Options>Refresh FNDB

or access it directly via the drop down menus from within WinEdt:
Accessories>MikTeX Options
The best way to install new packages from CTAN is via the Package Manager, which is accessed via

All Programs>MikTeX>Package Manager

The Package Manager downloads the files from a CTAN mirror of your choice, then installs all files in their correct folders and updates MikTeX's filename database.

It is a good idea to run the MiKTeX Update Wizard on a regular basis to keep your system up to date:

```
All Programs>MikTeX>MikTeX Update Wizard
```


A. $2 \quad L T_{E} X$ on a Mac

A.2.1 Installations

For the Mac, we install MacTeX, ${ }^{3}$ which consists of the TUG's TEX Live and Richard Koch's TeXShop. If you have TEX Live (see Section E.2), put the DVD in your computer's DVD drive and follow the simple instructions. In a few minutes you are done. Otherwise, go to
http://www.tug.org/mactex/
and in the Downloading section, click on MacTeX-2007. After downloading about 700 MBs , you get the MacTeX-2007 "disk image" that contains the mactex installer package. The disk image should open and the application MacTeX-2007.mpkg should start automatically. A few more clicks-as in all Mac installations-and you are done.

The spelling checker

Finally, get the spell checker cocoAspell by Anton Leuski by going to
http://people.ict.usc.edu/~leuski/cocoaspell/home.html
and clicking on the download link, cocoAspell. This downloads the disk image cocoAspell.dmg, containing the installation package cocoAspell.mpkg. Follow the same process as above to mount this. Then double click on the installer package and follow the instructions.

In the Apple menu, choose System Preferences..., where you find a new one, Spelling. Double click on it, and choose a dictionary. I use the dictionary English(United States). You should also select the filters you need. They are explained on the page you obtain by clicking on the Filter button. I selected Texinfo and TeX/LaTeX. You may have to restart the computer for the spelling checker to work.

To invoke the spelling checker, select a word and press Command+Shift and :. It suggests a correct spelling. You can also add words to the dictionary.

To learn more about the dictionaries, read the documents in
/Library/Application Support/cocoAspell/ aspell6-en-6.0-0/doc/

[^9]
A.2.2 Working with TeXShop
 Custom settings

In due course, you can fully customize TeXShop as an advanced user. But to begin, there are just a few things to do. In the TeXShop menu choose Preferences... to open the TeXShop Preferences. To set the default font for the source files in TeXShop, click on the Document tab. Under Document Font click Set..., which brings up the Font window. Choose a font and size for the source files that is easy on your eyes. I use Courier and 12. Close the Font window.

Make sure that under Editor all items except Auto Complete are selected.
Now click the Preview tab and in the Preview Window Magnification enter a number for the magnification to be used for viewing the typeset version-I use 150 . Once you type in the number, press Set. For Default Mouse Mode, choose Select Text. For Default Page Style, choose Multi-Page.

Under After Window Resize, choose Fixed Magnification. Then click on OK. Close the TeXShop Preferences window.

When you become more familiar with TeXShop, you may want to revisit these settings.

Changing a document for TeXShop

If

 - you use the graphicx package, see intrart.tex in the samples folder as an example, and
 - your document contains illustrations that have been saved as EPS graphics and included with the
in the preamble below the line

```
\usepackage{graphicx}
```

If you have many illustrations, it is preferable to open all the illustrations with TeXShop or Preview and save them in PDF format. Also, make sure that the extensions are not given in the \includegraphics commands, that is,

```
\usepackage{graphicx}
\includegraphics{products.eps}
```

is changed to

```
\usepackage{graphicx}
\includegraphics{products}
```


It is of some concern to me that the terminology used in multi-section math courses is not uniform.

In several sections of the course on matrix theory, the term "hamiltonian-reduced" is used. I, personally, would rather call these "hyper-simple." I invite others to comment on this problem.

Of special concern to me is the terminology in the course by Prof. Rudi Hochschwabauer. Since his field is new, there is no accepted terminology. It is imperative that we arrive at a satisfactory solution.

Figure A.3: The document note1.tex: the source and the typeset version.

A.2.3 The editing cycle

In your Document folder, you created the work folder (see page 4). We are going to work with the document note1.tex in the work folder.

To start TeXShop, double click on TeXShop.app in the Applications folder, select the menu File>Open. . ., and navigate to the folder

Documents/work/note1.tex
Open the document.
In the upper left corner of the source window, click the Typeset button. A second window opens, the preview window, showing note1. pdf, the typeset version of note1.tex. Unlike WinEdt, discussed in Section A.1, which produces a file called note1.dvi, TeXShop produces a PDF file, note1.pdf.

Figure A. 3 shows the two windows. At the top, you see TeXShop's seven menus. For this introduction we ignore all but two menu options. You should use the Help menu to learn more and the Macros Help in the Help window along with the Macro Editor (open it with Macros>Open Macro Editor. . .) to become more productive.

A.2.4 Making a mistake

TeXShop tells you if there is a mistake in your source file. Open note1. tex again and introduce a silly error, say, in the line \documentclass\{amsart\}, delete the closing brace, so it reads \documentclass\{amsart. A new window-the third!-pops up, called note1 console, see Figure A.4. This is the log window (see Section 1.3). Click on the button Goto Error and the cursor is placed in the source document pretty close to the error. Now you can correct the error and typeset again.

A.2.5 Three productivity tools

Now we see how the three productivity tools introduced in Section 1.4 are implemented in TeXShop.

Synchronization Command-click on a word in the source window. The preview window shows the corresponding typeset phrase circled in red. Similarly, commandclick on a word in the preview window and the corresponding source phrase is highlighted in yellow-it helps to click on text with no $\mathrm{ETE}_{\mathrm{E}} \mathrm{X}$ commands close by.

Block comment Select a number of lines in a source document, and choose the menu option Format>Comment. All the lines, the whole block, are commented out. The reverse is done with Format>Uncomment.

Go to line This is done with Edit>Line Number...

Figure A.4: The note1. tex console (log window).

Buttons and menu options all have keyboard equivalents. For instance, Block comment is Command $+\{$ and Go to line is Command +L .

A.2.6 An important folder

Create the texmf folder in the Library folder of your home folder-not the other Library folder, which is in the same folder as Applications. In texmf, create the tex folder, wherein you create the latex folder. Put all your personal (see Section 15.3) and additional sty files here.

B

Math symbol tables

B. 1 Hebrew and Greek letters

Hebrew letters

| Type | Typeset |
| :--- | :---: |
| \aleph | \aleph |
| \beth | \beth |
| \daleth | 7 |
| \gimel | \beth |

Greek letters

Lowercase

| Type | Typeset | Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\backslash a l p h a$ | α | \iota | ι | \sigma | σ |
| \backslash beta | β | \backslash kappa | κ | \backslash tau | τ |
| $\backslash \mathrm{gamma}$ | γ | \backslash lambda | λ | \upsilon | v |
| \backslash delta | δ | $\backslash \mathrm{mu}$ | μ | $\backslash \mathrm{phi}$ | ϕ |
| \epsilon | ϵ | $\backslash \mathrm{nu}$ | ν | \chi | χ |
| $\backslash z e t a$ | ζ | $\backslash \mathrm{xi}$ | ξ | $\backslash \mathrm{psi}$ | ψ |
| \eta | η | $\backslash \mathrm{pi}$ | π | \omega | ω |
| \backslash theta | θ | \backslash rho | ρ | | |
| \varepsilon | ε | \varpi | ϖ | \varsigma | ς |
| \vartheta | ϑ | \varrho | ϱ | $\backslash \mathrm{varphi}$ | φ |
| | \digamma | \digamma | \varkappa | \varkappa | |

Uppercase

| Type | Typeset | Type | Typeset | Type | Typeset |
| :--- | :---: | :--- | :---: | :--- | :---: |
| \Gamma | Γ | $\backslash \mathrm{Xi}$ | Ξ | \backslash Phi | Φ |
| \backslash Delta | Δ | $\backslash \mathrm{Pi}$ | Π | \backslash Psi | Ψ |
| \Theta | Θ | \backslash Sigma | Σ | \backslash Omega | Ω |
| \Lambda | Λ | \backslash Upsilon | Υ | | |
| \varGamma | Γ | \backslash varXi | Ξ | \varPhi | Φ |
| \varDelta | Δ | \backslash varPi | Π | \backslash varPsi | Ψ |
| \varTheta | Θ | \varSigma | Σ | \backslash varOmega | Ω |
| \varLambda | Λ | \backslash varUpsilon | Υ | | |

B. 2 Binary relations

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| < | < | > | $>$ |
| = | $=$ | : | : |
| \in | ϵ | \backslash ni or \owns | \ni |
| \backslash leq or \le | \leq | $\backslash \mathrm{geq}$ or \ge | \geq |
| $\backslash 11$ | \ll | $\backslash \mathrm{gg}$ | \gg |
| \backslash prec | \prec | \succ | \succ |
| \backslash preceq | \preceq | \backslash succeq | \succeq |
| \backslash sim | \sim | \approx | \approx |
| \backslash simeq | \simeq | \cong | \cong |
| \equiv | 三 | \doteq | $\dot{ }$ |
| \backslash subset | \subset | \backslash supset | \bigcirc |
| \backslash subseteq | \subseteq | \backslash supseteq | \supseteq |
| \sqsubseteq | \sqsubseteq | \sqsupseteq | \sqsupseteq |
| \smile | \smile | \frown | \bigcirc |
| \backslash perp | \perp | \backslash models | $1=$ |
| \backslash mid | \| | \backslash parallel | \| |
| \vdash | \vdash | \dashv | \dashv |
| \backslash propto | \propto | \asymp | \asymp |
| \bowtie | \bowtie | | |
| \sqsubset | \sqsubset | \sqsupset | \sqsupset |
| \backslash Join | \bowtie | | |

Note the \colon command used in $f: x \rightarrow x^{2}$, typed as
f \colon x \to x ^2

More binary relations

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| $\backslash \mathrm{leqq}$ | \leqq | $\backslash \mathrm{geqq}$ | \geqq |
| $\backslash \mathrm{leqslant}$ | \leqslant | \geqslant | \geqslant |
| \eqslantless | < | \eqslantgtr | $>$ |
| \lesssim | \lesssim | \gtrsim | \gtrsim |
| \lessapprox | § | \gtrapprox | \gtrsim |
| \approxeq | \approx | | |
| \lessdot | ¢ | \gtrdot | $\stackrel{\rightharpoonup}{ }$ |
| \lll | < | \ggg | 》 |
| $\backslash \mathrm{lessgtr}$ | \lessgtr | \gtrless | \gtrless |
| $\backslash \mathrm{lesseqgtr}$ | \lesseqgtr | \gtreqless | \gtreqless |
| \lesseqqgtr | § | \gtreqqless | \gtreqless |
| \backslash doteqdot | \doteqdot | \eqcirc | 프 |
| \circeq | $\stackrel{\circ}{=}$ | \triangleq | \triangleq |
| \backslash risingdotseq | \risingdotseq | \fallingdotseq | \fallingdotseq |
| \backslash backsim | \sim | \thicksim | \sim |
| \backsimeq | \simeq | \thickapprox | \approx |
| \preccurlyeq | \preccurlyeq | \succcurlyeq | \succcurlyeq |
| \curlyeqprec | \gtrless | \curlyeqsucc | \succ |
| \backslash precsim | \precsim | \succsim | \succsim |
| \precapprox | 冗 | \succapprox | \succsim |
| \subseteqq | \bigcirc | \supseteqq | \supseteqq |
| \backslash Subset | \Subset | \backslash Supset | \ni |
| \vartriangleleft | \triangleleft | \vartriangleright | \triangleright |
| \trianglelefteq | \unlhd | \trianglerighteq | \unrhd |
| \vDash | \vDash | \Vdash | $\stackrel{ }{-}$ |
| \Vvdash | II- | | |
| \backslash \mallsmile | \checkmark | \smallfrown | \bigcirc |
| \shortmid | 1 | \shortparallel | 11 |
| \backslash bumpeq | \bumpeq | \backslash Bumpeq | \approx |
| \backslash between | ℓ | \pitchfork | ¢ |
| \varpropto | \propto | \backepsilon | \ni |
| \blacktriangleleft | 4 | \blacktriangleright | - |
| \therefore | \therefore | \because | \because |

Negated binary relations

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| \backslash neq or \ne | \neq | \backslash notin | \notin |
| $\backslash \mathrm{nless}$ | ＊ | \ngtr | \ngtr |
| $\backslash \mathrm{nleq}$ | \neq | $\backslash \mathrm{ngeq}$ | $\not \geq$ |
| $\backslash \mathrm{nl}$ eqslant | ＊ | \backslash \ngeqslant | \ngtr |
| \backslash nleqq | $\not \equiv$ | \ngeqq | $\not \equiv$ |
| $\backslash 1 n e q$ | \leq | \gneq | 7 |
| \lneqq | \supsetneqq | \gneqq | \supsetneqq |
| \lvertneqq | \ddagger | \gvertneqq | 主 |
| $\backslash \mathrm{lnsim}$ | $\grave{\chi}$ | $\backslash \mathrm{gnsim}$ | خ |
| \backslash lnapprox | $\not \approx$ | \gnapprox | $\not \approx$ |
| \nprec | ¢ | $\backslash \mathrm{nsucc}$ | \nsucc |
| \npreceq | \npreceq | \nsucceq | \nsucceq |
| \backslash precneqq | \supsetneqq | \succneqq | \supsetneqq |
| \backslash precnsim | ね | \backslash Succnsim | \succsim |
| \precnapprox | $æ{ }^{\text {® }}$ | \succnapprox | \succsim |
| $\backslash \mathrm{nsim}$ | χ | \ncong | \nsupseteq |
| \backslash nshortmid | ＋ | \nshortparallel | H |
| $\backslash \mathrm{nmid}$ | \dagger | \nparallel | H |
| \backslash nvdash | \nvdash | $\backslash \mathrm{nvDash}$ | \nvdash |
| $\backslash \mathrm{nVdash}$ | \nVdash | \backslash VVDash | \nVdash |
| \ntriangleleft | A | \ntriangleright | ¢ |
| \ntrianglelefteq | $\not \pm$ | \ntrianglerighteq | $\not \pm$ |
| \backslash nsubseteq | \nsubseteq | \backslash nsupseteq | \nsupseteq |
| \nsubseteqq | \nsubseteq | \backslash nsupseteqq | \nsupseteq |
| \subsetneq | \subsetneq | \supsetneq | \supsetneq |
| \varsubsetneq | \ddagger | \backslash varsupsetneq | \geq |
| \subsetneqq | \varsubsetneqq | \backslash supsetneqq | \supsetneqq |
| \varsubsetneqq | \varsubsetneqq | \varsupsetneqq | 引 |

B． 3 Binary operations

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| ＋ | ＋ | － | － |
| \pm | \pm | $\backslash \mathrm{mp}$ | \mp |
| \times | \times | \cdot | ． |
| \circ | \bigcirc | $\backslash \mathrm{bigcirc}$ | \bigcirc |
| \div | \div | \backslash bmod | mod |
| \cap | \cap | \cup | \cup |
| \sqcap | \square | \sqcup | \sqcup |
| \backslash wedge or \land | \wedge | \vee or \lor | \checkmark |
| \triangleleft | \triangleleft | \triangleright | \triangleright |
| \bigtriangleup | \triangle | \bigtriangledown | ∇ |
| \oplus | \oplus | \ominus | \ominus |
| \otimes | \otimes | \oslash | \varnothing |
| \odot | \odot | \backslash bullet | － |
| \dagger | \dagger | \ddagger | \ddagger |
| \backslash setminus | 1 | \smallsetminus | \backslash |
| \wr | 2 | \amalg | ए |
| \ast | ＊ | \star | ＊ |
| \diamond | \diamond | | |
| \backslash lhd | \triangleleft | \rhd | \triangleright |
| \unlhd | \unlhd | \unrhd | \unrhd |
| \dotplus | $\dot{+}$ | \centerdot | － |
| \ltimes | \ltimes | $\backslash \mathrm{rtimes}$ | \rtimes |
| \leftthreetimes | λ | \backslash rightthreetimes | 人 |
| \circleddash | Θ | \uplus | \uplus |
| \barwedge | $\bar{\lambda}$ | \doublebarwedge | $\overline{\text { ® }}$ |
| \curlywedge | \curlywedge | \curlyvee | r |
| \veebar | $\underline{\text { v }}$ | \intercal | T |
| \doublecap or \Cap | ก | \doublecup or \Cup | ש |
| \circledast | \circledast | \circledcirc | \bigcirc |
| \backslash boxminus | \boxminus | \boxtimes | 『 |
| \backslash boxdot | \square | \boxplus | 田 |
| \divideontimes | ＊ | \vartriangle | \triangle |
| \backslash And | \＆ | | |

B． 4 Arrows

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| \leftarrow | \leftarrow | \rightarrow or \to | \rightarrow |
| \longleftarrow | \longleftarrow | \longrightarrow | \longrightarrow |
| \Leftarrow | \Leftarrow | \backslash Rightarrow | \Rightarrow |
| \Longleftarrow | \Longleftarrow | \Longrightarrow | \Longrightarrow |
| \leftrightarrow | \leftrightarrow | \longleftrightarrow | \longleftrightarrow |
| \Leftrightarrow | \Leftrightarrow | \Longleftrightarrow | \Longleftrightarrow |
| \uparrow | \uparrow | \downarrow | \downarrow |
| \Uparrow | 介 | \Downarrow | \Downarrow |
| \updownarrow | \downarrow | \Updownarrow | \｜ |
| \nearrow | \nearrow | \searrow | \downarrow |
| \swarrow | \swarrow | \nwarrow | \nwarrow |
| \iff | \Longleftrightarrow | \backslash mapstochar | ， |
| \backslash mapsto | \mapsto | \backslash longmapsto | \longmapsto |
| \hookleftarrow | $\stackrel{\sim}{\sim}$ | \hookrightarrow | \hookrightarrow |
| \leftharpoonup | \leftharpoonup | \backslash rightharpoonup | \rightarrow |
| \backslash leftharpoondown | \leftharpoondown | \rightharpoondown | \checkmark |
| $\backslash \mathrm{leadsto}$ | \sim | | |
| \leftleftarrows | \leftleftarrows | \rightrightarrows | \rightrightarrows |
| \leftrightarrows | \leftrightarrows | \rightleftarrows | \rightleftarrows |
| \Lleftarrow | $\stackrel{\wedge}{ }$ | \backslash Rrightarrow | \Rightarrow |
| \twoheadleftarrow | 世 | \twoheadrightarrow | \rightarrow |
| \leftarrowtail | \longleftarrow | \backslash rightarrowtail | \longmapsto |
| \looparrowleft | \leftarrow | \looparrowright | \rightarrow |
| \upuparrows | \uparrow | \downdownarrows | \downarrow |
| \upharpoonleft | 1 | \upharpoonright | 1 |
| \downharpoonleft | \downarrow | \downharpoonright | 1 |
| \backslash leftrightsquigarrow | the | \backslash rightsquigarrow | \rightsquigarrow |
| \backslash multimap | \bigcirc | | |
| \nleftarrow | － | \nrightarrow | \rightarrow |
| \nLeftarrow | \nLeftarrow | \backslash nRightarrow | \nRightarrow |
| \nleftrightarrow | \leftrightarrow | \nLeftrightarrow | ¢ |
| \dashleftarrow | ＋－－ | \dashrightarrow | \rightarrow |
| \curvearrowleft | \curvearrowleft | \curvearrowright | \curvearrowright |
| \circlearrowleft | \bigcirc | \circlearrowright | 厄 |
| \backslash leftrightharpoons | \leftrightharpoons | \rightleftharpoons | \rightleftharpoons |
| \Lsh | ¢ | \backslash Rsh | 「 |

B. 5 Miscellaneous symbols

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| \hbar | \hbar | \ell | ℓ |
| \imath | \imath | \jmath | \jmath |
| \wp | \wp | \partial | ∂ |
| \backslash Im | \Im | $\backslash \mathrm{Re}$ | \Re |
| \infty | ∞ | \prime | 1 |
| \emptyset | \emptyset | \varnothing | \varnothing |
| \backslash forall | \forall | \exists | \exists |
| \backslash \mallint | J | \triangle | \triangle |
| \top | T | \bot | \perp |
| $\backslash \mathrm{P}$ | 4 | $\backslash \mathrm{S}$ | § |
| \dag | \dagger | \ddag | \ddagger |
| \flat | b | \natural | \square |
| \sharp | \# | \angle | \angle |
| \clubsuit | 9 | \diamondsuit | \diamond |
| \heartsuit | \bigcirc | \backslash spadesuit | © |
| \backslash surd | $\sqrt{ }$ | $\backslash \mathrm{nabla}$ | ∇ |
| £ | $£$ | \backslash neg or \lnot | \neg |
| \backslash Box | \square | \backslash Diamond | \diamond |
| $\backslash \mathrm{mho}$ | ช | | |
| \hslash | \hbar | \complement | C |
| \backprime | 1 | \backslash nexists | \# |
| \Bbbk | \underline{k} | | |
| \diagup | / | \diagdown | λ |
| \blacktriangle | - | \blacktriangledown | ∇ |
| \triangledown | ∇ | \eth | д |
| \square | \square | \blacksquare | \square |
| \backslash lozenge | \diamond | \blacklozenge | \checkmark |
| \backslash \measuredangle | \measuredangle | \sphericalangle | 『 |
| \circledS | (5) | \bigstar | \star |
| \backslash Finv | \pm | \Game | ว |

B. 6 Delimiters

| Name | Type | Typeset | |
|---|---|---|---|
| left parenthesis | (| (|
| right parenthesis |) |) |
| left bracket | [or \lbrack | [|
| right bracket |] or \rbrack |] |
| left brace | | |
| or \lbrace | \{ | |
| right brace | | |
| $or \rbrace }$ | \} | |
| backslash | \backslash | 1 |
| forward slash | / | / |
| left angle bracket | \langle | \langle |
| right angle bracket | \rangle | > |
| vertical line | \| or \vert | \| |
| double vertical line | \। or \Vert | \|| |
| left floor | \lfloor | L |
| right floor | \rfloor | 」 |
| left ceiling | \lceil | [|
| right ceiling | \rceil | 1 |
| upward | \uparrow | \uparrow |
| double upward | \Uparrow | 介 |
| downward | \downarrow | \downarrow |
| double downward | \Downarrow | \Downarrow |
| up-and-down | \updownarrow | \downarrow |
| double up-and-down | \Updownarrow | § |
| upper-left corner | \ulcorner | \ulcorner |
| upper-right corner | \urcorner | \urcorner |
| lower-left corner | \llcorner | \llcorner |
| lower-right corner | \lrcorner | \lrcorner |

B. 7 Operators

"Pure" operators, with no limits

| Type | Typeset | Type | Typeset | Type | Typeset | Type | Typeset |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\backslash \arccos$ | \arccos | $\backslash \cot$ | cot | \backslash hom | hom | $\backslash \sin$ | \sin |
| $\backslash \arcsin$ | \arcsin | $\backslash \operatorname{coth}$ | coth | \backslash ker | ker | $\backslash \sinh$ | \sinh |
| $\backslash \arctan$ | \arctan | $\backslash \csc$ | \csc | $\backslash l g$ | \lg | $\backslash \tan$ | \tan |
| $\backslash \arg$ | \arg | $\backslash \operatorname{deg}$ | deg | $\backslash \ln$ | \ln | $\backslash \tanh$ | tanh |
| $\backslash \cos$ | \cos | $\backslash \operatorname{dim}$ | dim | $\backslash l o g$ | \log | | |
| $\backslash \cosh$ | \cosh | $\backslash \exp$ | \exp | $\backslash \sec$ | \sec | | |

Operators with limits

| Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: |
| \backslash det | det | \limsup | limsup |
| $\backslash \mathrm{gcd}$ | gcd | \backslash max | max |
| \inf | inf | \backslash min | min |
| \lim | lim | $\backslash \operatorname{Pr}$ | Pr |
| $\backslash \mathrm{liminf}$ | lim inf | \backslash sup | sup |
| \injlim | inj lim | \projlim | proj lim |
| \varliminf | $\underline{\text { lim }}$ | \varlimsup | ¢im |
| \varinjlim | $\xrightarrow{\text { lim }}$ | \varprojlim | $\stackrel{\lim }{\leftarrow}$ |

B．7．1 Large operators

| Type | Inline | Displayed |
| :---: | :---: | :---: |
| \int＿\｛a\}^\{b\} | \int_{a}^{b} | \int_{a}^{b} |
| \oint＿\｛a\}^\{b\} | \oint_{a}^{b} | \oint_{a}^{b} |
| \iint＿\｛a\}へ\{b\} | \iint_{a}^{b} | \iint_{a}^{b} |
| \iiint＿\｛a\}^\{b\} | \iiint_{a}^{b} | \iiint_{a}^{b} |
| \iiiiint＿\｛a\}^\{b\} | $\iiint \int_{a}^{b}$ | $\iiint \int_{a}^{b}$ |
| \idotsint＿\｛a\}^\{b\} | $\int \cdots \int_{a}^{b}$ | $\int \cdots \int_{a}^{b}$ |
| $\backslash p r o d _\{i=1\}^{\wedge}\{n\}$ | $\prod_{i=1}^{n}$ | \prod^{n} |
| | | $\stackrel{i}{n}$ |
| \coprod＿\｛i＝1\}へ\{n\} | $\coprod_{i=1}^{n}$ | 工 |
| | | ${ }_{n}$ |
| \bigcap＿\｛i＝1\}へ\{n\} | $\bigcap_{i=1}^{n}$ | \bigcirc |
| | | $\stackrel{i}{n} 1$ |
| \backslash bigcup＿\｛i＝1\}^\{n\} | $\bigcup_{i=1}^{n}$ | \bigcup |
| | | $i=1$ |
| $\backslash \mathrm{bigwedge}$＿$i=1\}^{\wedge}\{\mathrm{n}\}$ | $\bigwedge_{i=1}^{n}$ | \wedge |
| | | $\stackrel{i=1}{n}$ |
| \backslash bigvee＿\｛i＝1\}^\{n\} | $\bigvee_{i=1}^{n}$ | V |
| | | $\stackrel{i}{n} 1$ |
| \backslash bigsqcup＿\｛i＝1\}^\{n\} | $\bigsqcup_{i=1}^{n}$ | \square |
| | | $\stackrel{\square}{n}$ |
| \biguplus＿\｛i＝1\}^\{n\} | $\biguplus_{i=1}^{n}$ | \pm |
| | | $i=1$ |
| \backslash bigotimes＿\｛i＝1\}^\{n\} | $\bigotimes_{i=1}^{n}$ | \bigotimes |
| | | $\underset{i=1}{n}$ |
| \bigoplus＿\｛i＝1\}^\{n\} | $\bigoplus_{i=1}^{n}$ | \bigoplus |
| | | $\underset{i=1}{n}$ |
| \backslash bigodot＿\｛i＝1\}^\{n\} | $\bigodot_{i=1}^{n}$ | \bigcirc |
| | | $\underset{n}{i=1}$ |
| \backslash sum＿$\left.^{\text {a }} \mathrm{i}=1\right\}^{\wedge}\{\mathrm{n}\}$ | $\sum_{i=1}^{n}$ | \sum |
| | | $\sum_{i=1}$ |

B. 8 Math accents and fonts

Math accents

| Type | Typeset | amsxtra | |
| :---: | :---: | :---: | :---: |
| | | Type | Typeset |
| \acute\{a\} | á | | |
| $\backslash \mathrm{bar}\{\mathrm{a}\}$ | \bar{a} | | |
| \breve\{a\} | \breve{a} | \spbreve | |
| $\backslash \mathrm{check}\{\mathrm{a}\}$ | \check{a} | \spcheck | \checkmark |
| $\backslash \operatorname{dot}\{\mathrm{a}\}$ | \dot{a} | \backslash spdot | |
| $\backslash \mathrm{ddot}\{\mathrm{a}\}$ | \ddot{a} | \backslash spddot | .. |
| \backslash dddot\{a\} | a | \spdddot | ... |
| \backslash ddddot\{a\} | \dddot{a} | | |
| \grave\{a\} | à | | |
| $\backslash \mathrm{hat}$ \{a\} | â | | |
| \widehat\{a\} | \widehat{a} | \sphat | \wedge |
| \backslash mathring\{a\} | $\stackrel{a}{a}$ | | |
| \tilde\{a\} | \tilde{a} | | |
| \widetilde\{a\} | \widetilde{a} | \sptilde | \sim |
| \vec\{a\} | \vec{a} | | |

Math fonts

| Type | Typeset |
| :---: | :---: |
| $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ | |
| \backslash mathbf $\{\mathrm{A}\}$ | A |
| \backslash mathcal\{A\} | \mathcal{A} |
| \backslash mathit $\{\mathrm{A}\}$ | A |
| \backslash mathnormal\{A\} | A |
| $\backslash \mathrm{mathrm} \mathrm{\{A} \mathrm{\}}$ | A |
| $\backslash \mathrm{mathsf}\{\mathrm{A}\}$ | A |
| \backslash mathtt $\{\mathrm{A}\}$ | A |
| \boldsymbol\{\alpha\} | α |
| \backslash mathbb\{A\} | A |
| $\backslash \mathrm{mathfrak} \mathrm{\{A} \mathrm{\}}$ | \mathfrak{A} |
| \backslash mathscr\{a\} | \mathcal{A} |

\mathscr requires the eucal package with the mathscr option

B. 9 Math spacing commands

| Name | Width | Short | Long |
| :---: | :---: | :---: | :---: |
| 1 mu (math unit) | 1 | $\backslash \mathrm{mspace}\{1 \mathrm{mu}$ \} | |
| thinspace | U | | |
| , | \thinspace | | |
| medspace | U | \: | \backslash medspace |
| thickspace | \sqcup | \; | \thickspace |
| interword space | \sqcup | $\backslash \sqcup$ | |
| 1 em | \llcorner | | \quad |
| 2 em | \checkmark | | \qquad |
| Negative space | | | |
| 1 mu | 1 | | \backslash mspace\{-1mu\} |
| thinspace | u | $\backslash!$ | \backslash negthinspace |
| medspace | U | | \backslash negmedspace |
| thickspace | U | | \backslash negthickspace |

APPENDIX

Text symbol tables

C. 1 Some European characters

| Name | Type | Typeset | Type | Typeset |
| :---: | :---: | :---: | :---: | :---: |
| a-ring | \aa | å | \backslash AA | A |
| aesc | $\backslash \mathrm{ae}$ | æ | $\backslash \mathrm{AE}$ | Æ |
| ethel | \oe | \propto | $\backslash \mathrm{OE}$ | (E |
| eszett | \ss | β | \backslash SS | SS |
| inverted question mark | ? | i | | |
| inverted exclamation mark | !' | i | | |
| slashed L | \1 | ł | \L | L |
| slashed O | \o | \emptyset | $\backslash 0$ | \emptyset |

C. 2 Text accents

| Name | Type | Typeset | Name | Type | Typeset |
| :---: | :---: | :---: | :---: | :---: | :---: |
| acute | \'\{0\} | ó | macron | $\backslash=\{0\}$ | ō |
| breve | $\backslash u\{0\}$ | ŏ | overdot | $\backslash .\{\mathrm{g}\}$ | g |
| caron/haček | \v\{o\} | ǒ | ring | $\backslash \mathrm{r}\{\mathrm{u}\}$ | u |
| cedilla | $\backslash c\{c\}$ | ¢ | tie | $\backslash t\{00\}$ | 00 |
| circumflex | | | | | |
| ~\{o\} | ô | tilde | $\backslash \sim\{n\}$ | ñ | |
| dieresis/umlaut | \"\{u\} | ü | underdot | $\backslash d\{m\}$ | m |
| double acute | \H\{0\} | ő | underbar | $\backslash \mathrm{b}$ o\} | - |
| grave | \'\{o\} | ò | | | |
| dotless i | \i | 1 | dotless j | \j | J |
| | \'\{\i\} | í | | $\backslash \mathrm{v}\{\backslash j\}$ | J |

C. 3 Text font commands

C.3.1 Text font family commands

| Command with Argument | Command Declaration | Switches to the font family |
| :---: | :---: | :---: |
| \textnormal\{...\} | \{\normalfont ...\} | document |
| \emph\{...\} | \{\em ...\} | emphasis |
| \textrm\{...\} | \{\rmfamily ...\} | roman |
| \textsf\{...\} | \{\sffamily ...\} | sans serif |
| \texttt\{...\} | \{\ttfamily ...\} | typewriter style |
| \textup\{...\} | \{\upshape ...\} | upright shape |
| \textit\{...\} | \{\itshape ...\} | italic shape |
| \textsl\{...\} | \{\slshape ...\} | slanted shape |
| \textsc\{...\} | \{\scshape ...\} | Small capitals |
| \textbf\{...\} | \{\bfseries ...\} | bold |
| \textmd\{...\} | \{\mdseries ...\} | normal weight and width |

C.3.2 Text font size changes

| Command | $\mathrm{LAT}^{\text {E }}$ X sample text | AMS sample text |
| :---: | :---: | :---: |
| \Tiny | [not available] | sample text |
| \tiny | sample text | sample text |
| \backslash SMALL or \scriptsize | sample text | sample text |
| \backslash Small or \footnotesize | sample text | sample text |
| \backslash \small | sample text | sample text |
| \normalsize | sample text | sample text |
| \backslash large | sample text | sample text |
| \backslash Large | sample text | sample text |
| \backslash LARGE | sample text | sample text |
| \backslash huge | sample text | sample text |
| \Huge | sample text | sample text |

C. 4 Additional text symbols

| Name | Type | Typeset |
| :---: | :---: | :---: |
| ampersand | | |
| | | |
| asterisk bullet | ∗ | * |
| backslash | \ | 1 |
| bar (caesura) | \| | \| |
| brace left | | |
| | \{ | |
| brace right | | |
| $}$ | \} | |
| bullet | • | - |
| circled a | \textcircled\{a\} | (a) |
| circumflex | ˆ | |
| copyright | \copyright | (c) |
| dagger | \backslash dag | \dagger |
| double dagger (diesis) | \ddag | \ddagger |
| dollar | | |
| $ | \$ | |
| double quotation left | “ or '، | " |
| double quotation right | ” or ', | " |
| em dash | — or --- | - |
| en dash | – or -- | - |
| exclamation down | ¡ or ! ${ }^{\text {c }}$ | i |
| greater than | > | > |
| less than | < | < |
| lowline | _ | - |
| midpoint | · | |
| octothorp | | |
| # | \# | |
| percent | | |
| % | \% | |
| pilcrow (paragraph) | $\backslash \mathrm{P}$ | 9 |
| question down | ¿ or?‘ | i |
| registered trademark | ® | ® |
| section | \S | § |

Additional text symbols, continued

| Name | Type | Typeset |
| :--- | :--- | :---: |
| single quote left | ‘ or ' | $‘$ |
| single quote right | ’ or, | , |
| sterling | £ | $£$ |
| superscript | \textsuperscript\{a\} | a |
| tilde | ̃ | \sim |
| trademark | TM | TM |
| visible space | ˽ | - |

For the \backslash textsubscript command, see Section 12.3.

C. 5 Additional text symbols with T1 encoding

An accent

| Name | Type | Typeset |
| :--- | :--- | :---: |
| Ogonek | $\backslash \mathrm{k}\{\mathrm{e}\}$ | e |

European characters

| Name | Type | Typeset | Type | Typeset |
| :--- | :---: | :---: | :---: | :---: |
| Eth | \backslash dh | ð | $\backslash D H$ | Đ |
| Dyet | \backslash dj | đ | $\backslash D J$ | Đ |
| Eng | \backslash ng | η | \backslash NG | D |
| Thorn | \backslash th | p | \backslash TH | P |

Quotation marks

| Name | Type | Typeset | Type | Typeset |
| :--- | :--- | :---: | :--- | :---: |
| Single Guillemet | \guilsinglleft | $<$ | \guilsinglright | $>$ |
| Double Guillemet | \guillemotleft | " | \guillemotright | $»$ |
| Single Quotation | \quotesinglbase | , | ’ | " |
| Double Quotation | \quotedblbase | $"$ | \textquotedbl | $"$ |

C. 6 Text spacing commands

| Name | Width | Short command | Long command |
| :---: | :---: | :---: | :---: |
| Positive Space | | | |
| Normal | varies | \sqcup | |
| Intersentence | varies | \@.ь | |
| Interword | varies | \backslash | |
| Italic Corr. | varies | \/ь | |
| Tie | varies | \sim | |
| Thinspace | u | | |
| , | \thinspace | | |
| Medspace | u | \: | \backslash medspace |
| Thickspace | U | \; | \thickspace |
| 1 em | \sqcup | | \quad |
| 2 em | \checkmark | | \qquad |
| Negative Space | | | |
| Thinspace | v | $\backslash!$ | \backslash negthinspace |
| Medspace | u | | \backslash negmedspace |
| Thickspace | บ | | \backslash negthickspace |

APPENDIX

D

Some background

In this book we define $\mathrm{EAT}_{\mathrm{E} X}$ as the foundation $\mathrm{T}_{\mathrm{E}} X$, the work platform $\mathrm{EAT}_{\mathrm{E}} X$, and the superstructure AMS packages rolled into one. While you do not need to know anything about $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$'s detailed structure and history to use it, such knowledge may help you understand how and why $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ works the way it does.

In Section D.1, we present a short history of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, where it has come from and where it is going. Section D. 2 provides a description of the structure of LTTEX. Appendix D. 3 provides a description of how $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ works. In Appendix D.4, the various prompts are defined and Appendix D. 5 discusses the separation of visual and logical design elements.

D. 1 A short history

D.1.1 $T_{E} X$

Donald E. Knuth's multivolume work, The Art of Computer Programming [37], caused its author a great deal of frustration because it was very difficult to keep the volumes typographically uniform. To solve this problem, Knuth decided to create his own typesetting language. The result is described in The $T_{E} X$ book [38].

A mathematical typesetting language takes care of the multitude of details that are so important in mathematical typesetting, including
 - Spacing formulas properly
 - Breaking text into pleasingly typeset lines and paragraphs
 - Hyphenating words where necessary
 - Providing hundreds of symbols for typesetting mathematics

LATEX does all this and more on almost any computer: PC, Mac, UNIX, workstation, or mainframe. You can write your document on a PC and e-mail it to a coworker who makes corrections on a Mac. The final manuscript might be sent to a publisher who uses a UNIX computer to prepare the document for printing.

Knuth realized that typesetting is only half the solution to the manuscript production problem. You also need a style designer-a specialist who determines what fonts to use, how large a vertical space to put before and after a theorem, and numerous other design issues.

D.1.2 ${ }^{L} T_{E} X 2.09$ and $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-} T_{E} X$

Knuth also realized that typesetting a complex document in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ requires a very knowledgeable user. So $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was designed as a platform on which convenient work environments - macro packages-could be built, more suitable for the average user to work with. It is somewhat unfortunate that two such platforms were made available to the mathematical community in the early $1980 \mathrm{~s}, \mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{ETEX}_{\mathrm{E}}$.
$\mathcal{A}_{\mathcal{M}}{ }^{\mathcal{S}}$-TEX was written by Michael D. Spivak for the American Mathematical Society, whereas $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ was developed by Leslie Lamport. The strengths of the two systems were somewhat complementary. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ provided many features needed by mathematical articles, including
 - Sophisticated math typesetting capabilities
 - Extensive options for formatting multiline formulas
 - Flexible bibliographic references
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ also provided many features, including
 - The use of logical units to separate the logical and the visual design of an article
 - Automatic numbering and cross-referencing
 - Bibliographic databases

Both $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - T_{E} and $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ became very popular, causing a split in the mathematical community as some chose one system over the other.

D.1.3 $\quad L T_{E} X 3$

When Lamport decided not to develop EATEX any further, the ETEX3 team ${ }^{1}$ took over with the aim of actively supporting, maintaining, and updating ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

The goals for ${ }^{[} T_{E} \mathrm{X} 3$ are very ambitious. $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} 3$ will
 - Provide high-quality typesetting for a wide variety of document types and typographic requirements
 - Support direct formatting commands for editors and designers, which are essential to the fine-tuning of document layout and page design
 - Process complex structured documents and support a document syntax that allows automatic translation of documents conforming to the international document-type definition standard SGML (Standard Generalized Markup Language, ISO 8879)
 - Provide a common foundation for a number of incompatible $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ variants that have been developed, including the old $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ 2.09, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ with the New Font Selection Scheme, and $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX

See two articles by Frank Mittelbach and Chris Rowley, $L^{A} T_{E} X 2.09 \rightarrow L^{A} T_{E} X 3$ [47], 1992, and The LATEX3 Project [49], 1994, for a statement of goals. Go to The LaTeX3 project at
http://www.latex-project.org/latex3.html
for more up-to-date articles and reports.
A number of ${ }^{\mathrm{AT}} \mathrm{EX} 3$ projects have already been completed and are part of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, including:

The New Font Selection Scheme ${ }^{\mathrm{AT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ uses Knuth's Computer Modern fonts. The New Font Selection Scheme, nfss, of Frank Mittelbach and Rainer Schöpf, written in 1989, allows the independent changing of font attributes and the integration of new font families into $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$. With the proliferation of PostScript fonts and printers, more and more users want to use PostScript fonts in their ETEX documents.

New and improved environments Frank Mittelbach wrote a new multicolumn environment and Rainer Schöpf improved the verbatim and comment environments. There have also been several improvements made to the tabular and array environments. The extremely important graphicx package by David Carlisle and Sebastian Rahtz was released.

[^10]
The first interim solution

In 1990, the AMS released $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-EATEX, version 1.0 -see Rainer Schöpf's Foreword to this book for a personal account. This release contained
 - $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ recoded to work with $\mathrm{ETT}_{\mathrm{E}} \mathrm{X}$
 - The NFSS styles for proclamations
 - The new verbatim environment
$\mathcal{A}_{\mathcal{M}} \mathcal{S}$-AT E X , version 1.0, is a $\mathrm{ET}_{\mathrm{E} X}$ dialect. It was incompatible with the then current LTEX—version 2.09. 2.

While the ETEX3 team wanted to unify the mathematical community, this first attempt by the AMS split it even further apart. Many $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users simply refused to switch. Even today, 17 years later, many mathematicians cling to $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Even the ${ }^{\mathrm{ET}} \mathrm{T} \mathrm{X}$ community was split into users of the old $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, those whose $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ incorporated the nFSS, and $\mathcal{A} \mathcal{M} \mathcal{S}$-EATEX users.

The second interim solution

When it became obvious that the goals of ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X} 3$ could not be fulfilled any time soon, the $\mathrm{AT}_{\mathrm{E}} \mathrm{X} 3$ team decided to issue a new version of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, version 2 e (also called ${ }^{\mathrm{LT}} \mathrm{T}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$) in June of 1994. This version replaced LATEX 2.09, see the two Mittelbach and Rowley articles cited above. This interim release accomplished some of EATEX3's goals, including the projects listed previously. Since then, $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$ (called $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ today) has become accepted as the standard $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

In February of 1995, the AMS released version 1.2 of $\mathcal{A} \mathcal{M} \mathcal{S}$-ETEX (which I call the AMS packages in this book) built on top of the new ITEX. Michael Downes was the project leader.

The changes in $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-ETEX were substantial. The align environment, for example, was completely rewritten by David M. Jones. The recoded $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ had now become a ${ }^{A} T_{E} \mathrm{X}$ package, amsmath.

It is extremely important to note that while $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ - $\mathrm{ET} \mathrm{T}_{\mathrm{E}} 1.0$ and 1.1 were monolithic structures, versions 1.2 and 2.0 (see Section D.1.4) are just collections of packages that fit nicely into the ${ }^{\mathrm{ET}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ model. You can use one AMS package or all, by themselves or mixed with other $\mathrm{ATEX}_{\mathrm{E}}$ packages. This book was typeset using the $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ document class (book) and the AMS packages, version 2.13, along with a number of other $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ (non-AMS) packages.

D.1.4 More recent developments

Since 1996, changes to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ have been minor. A few new symbols have been added. Much work has been done on character encoding and LM (Latin Modern) fonts by

Bogusław Jackowski and Janusz M. Nowacki to extend $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ to languages other than American English (see Appendixes F and G).

In 1999, the American Mathematical Society released version 2.0 of the AMS packages and in 2004, version 2.2. About the same time, a consortium (made up of the AMS, Blue Sky Research, and Y\&Y) released free PostScript versions of the CM and AMS fonts. These PostScript fonts are now part of any $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution.

Interestingly, there are still those who argue that the AMS packages are not part and parcel of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and typesetting math. In life, almost everything is a compromise, in software design, even more so. Using the AMS packages to typeset math is an exception. It costs you nothing-if you do not need their features for a document, then you don't have to use them. You need not sacrifice anything in order to have the power of the AMS packages available when you need them. This is why, in this book, by ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ we mean $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ with the AMS packages.

D. 2 Structure

ETEX's core is a programming language called $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, created by Donald E. Knuth, which provides low-level typesetting instructions. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ comes with a set of fonts called Computer Modern (CM). The CM fonts and the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ programming language form the foundation of a typical $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ system.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is extensible-new commands can be defined in terms of more basic ones. LATEX is one of the best known extensions of TEX.

The visual layout of a ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ document is primarily determined by the document class, such as amsart, article for articles, amsbook, book for books. Many journals, publishers, and schools have their own document classes for formatting articles, books, and theses.

Extensions of $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ are called packages. They provide additional functionality by adding new commands and environments, or by changing the way previously defined commands and environments work. It is essential that you find the packages that make your work easier. The $L^{A} T_{E} X$ Companion, 2nd edition [46] discusses a large number of the most useful packages.

The structure of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ is illustrated in Figure D.1. This figure suggests that in order to work with a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document, you first have to install $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and the CM fonts, then $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, and finally specify the document class and the necessary packages. The packages must include amsmath, amsthm, and so on. The AMSFonts font set is very useful, but not absolutely necessary. Of course, chances are that your ETEX installation already includes all of these.

D.2.1 Using $\boldsymbol{L A} T_{E} X$

Figure D. 2 on page 527 illustrates the steps in the production of a typeset document. You start by opening an existing LATEX source file or creating a new one with a

Figure D.1: The structure of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.
text editor. For this discussion, the source file is called myart.tex. Once the source file is ready, you typeset it. Depending on the document class options you choose and the packages the document loads, you end up with at least three additional files:

1. myart.dvi or myart.pdf The typeset article in machine-readable format-DVI stands for DeVice Independent-or in PDF format.
2. myart. aux The auxiliary file, used by ${ }^{\mathrm{AT}} \mathrm{E} X$ for internal bookkeeping, including cross-references and bibliographic citations.
3. myart.log The log file. $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ records the typesetting session in the \log file, including any warnings and error messages that appear on your monitor in the log window.
Your computer uses a video driver to display the typeset article on your monitor and a printer driver to print the typeset article on a printer. The video and printer drivers are computer and $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ implementation dependent.

It should be emphasized that of the three applications used, only one is the same for all computers and all implementations.

Figure D.2: Using LATEX.

D.2.2 AMS packages revisited

The AMS enhancements to ETEX fall into three groups: the AMS math enhancements, the document classes, and the AMSFonts. They consist of several packages.

An AMS document class automatically loads a number of AMS packages (see Section 11.6 for a more detailed discussion) including:
 - amsmath, the main AMS math package
 - amsfonts, commands for math alphabets
 - amsbsy, bold symbol commands

The AMS document classes do not automatically load the amssymb package, which provides math symbol names. This package and other AMS or $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ packages can be loaded as needed.

D. 3 How ${ }^{L T} T_{E}$ X works

In this section, I present a very simplified overview of the inner workings of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.

D.3.1 The layers

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ consist of many layers. These include:
virtex $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s core, containing about 350 primitive commands such as
input accent hsize
virtex can also read format files, which are precompiled sets of commands. $\mathrm{LATEX}_{\mathrm{E}}$ is nothing more than virtex reading in a large set of commands, built layer upon layer.
plain.tex The most basic layer built on virtex. It adds about 600 commands to virtex. When you invoke the TeX command, virtex loads the plain format, which is the default. The core $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands combined with the commands defined by the plain format are called Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is described in detail in Appendix B of Knuth's The $T_{E} X b o o k$ [38]. You can also read plain.tex, a text file in the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution. Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is powerful enough that you could do all your work in it. This approach is advocated by many, including Michael Doob in his book, TEX Starting from 1 [12].
virtex cannot build (compile) format files. For that you need another version of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ called initex, which loads the most basic information a format needs, such as the hyphenation tables and plain.tex, and creates a format file.

${ }^{L T} T_{E} X$

${ }^{\mathrm{LAT}} \mathrm{EX}$ is a format file containing a compiled set of commands written by Leslie Lamport and others. It provides tools for logical document design, automatic numbering and cross-referencing, tables of contents, and many other features. The new $\mathrm{ETE}_{\mathrm{E}} \mathrm{X}$ we are using is under the control of the $\mathrm{ET}_{\mathrm{E}} \mathrm{X} 3$ group.

Document classes

The document class forms the next layer. You may choose
 - amsart, amsbook, or amsproc, provided by the AMS
 - article, book, letter, proc, report, or slides, the legacy classes
 - or any one of a large (and growing) number of other document classes provided by publishers of books and journals, universities, and other interested parties

Packages

The next layer is made up of the packages loaded by the document. You can use standard IATEX packages, AMS packages, or any of hundreds of other packages in the LATEX universe, mixed together as necessary. Any package may require other packages, or may automatically load other packages.

Documents

At the top of this hierarchy sit your documents, with their user-defined commands and environments, utilizing all the power derived from the layers below.

D.3.2 Typesetting

When typesetting, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ uses two basic types of files, the source files and the font metric files.

A font metric file is designed to hold the information for a font of a given size and style. Each $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ font metric file, called a tfm file, contains the size of each character, the kerning (the space placed between two adjacent characters), the length of the italic correction, the size of the interword space, and so on. A typical tfm file is cmr $10 . \mathrm{tfm}$, which is the $\mathrm{EATE}_{\mathrm{E}} \mathrm{X}$ font metric file for the font cmr (CM roman) at 10 -point size.
$\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ reads the source file one line at a time. It converts the characters of each line into a token sequence. A token is either a character-together with an indication of what role the character plays-or a command. The argument of a command is the token following it unless a group enclosed in braces follows it, in which case the contents of the group becomes the argument. ${ }^{2}$ An example of this behavior can be seen when you

[^11]specify an exponent. $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ looks for the next token as the exponent unless a group enclosed in braces follows the ^ symbol. This explains why $\$ 2^{\wedge} 3 \$$ and $\$ 2^{\wedge} \backslash a l p h a \$$ work, but $\$ 2^{\wedge} \backslash$ mathfrak $\{m\} \$$ does not. Indeed, 3 and \backslash alpha each become a single token but \backslash mathfrak $\{m\}$ becomes more than one, four, in fact. Of course, if you always use braces, as in

```
$ 2^{3}$, $2^{\alpha}$, $2^{ \mathfrak{m} }$
```

then you never have to think about tokens to type such expressions.
After tokenizing the text, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ hyphenates it and attempts to split the paragraph into lines of the required width. The measurements of the characters-also called glyphs-are absolute, as are the distances between characters-called kerning. The spaces, interword space, intersentence space, and so on, are made of glue or rubber length (see Section 15.5.2). Glue has three parameters:
 - the length of the space
 - stretchability, the amount by which it can be made longer
 - shrinkability, the amount by which it can be made shorter

LATEX stretches and shrinks glue to form lines of equal length.
${ }^{\mathrm{ET}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ employs a formula to measure how much stretching and shrinking is necessary in a line. The result is called badness. A badness of 0 is perfect, while a badness of 10,000 is very bad. Lines that are too wide are reported with messages such as

```
Overfull \hbox (5.61168pt too wide) in paragraph
    at lines 49--57
```

The badness of a line that is stretched too much is reported as follows:

```
Underfull \hbox (badness 1189) in paragraph
    at lines 93--93
```

Once enough paragraphs are put together, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ composes a page from the typeset paragraphs using vertical glue. A short page generates a warning message such as

Underfull \vbox (badness 10000) has
occurred while \output is active
The typeset file is stored as a dvi (Device Independent) file or a PDF file.

D.3.3 Viewing and printing

Viewing and printing $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$'s typeset output are not really part of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ proper, but they are obviously an important part of your work environment. The printer driver prints the dvi and PDF files, and the video driver lets you view them on your monitor.

D.3.4 LTTE \boldsymbol{E}^{X} 's files

Auxiliary files

LATEX is a one-pass compiler, that is, it reads the source file once only for typesetting. As a result, $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ must use auxiliary files to store information it generates during a run. For each typesetting run, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ uses the auxiliary files compiled during the previous typesetting run. This mechanism explains why you have to typeset twice or more (see Section 18.2) to make sure that changes you have made to the source files are reflected in the typeset document. Such an auxiliary file has the same base name as the source file, the extension indicates its type.

The most important auxiliary file, the aux file, contains a great deal of information about the document, most importantly, the data needed for symbolic referencing. Here are two typical entries:
\newlabel\{struct\}\{\{5\}\{2\}\}
\bibcite\{eM57a\}\{4\}
The first entry indicates that a new symbolic reference was introduced on page 2 of the typeset document in Section 5 using the command
\label\{struct\}
The command \backslash ref \{struct\} produces 5, while \backslash pageref \{struct\} yields 2.
The second entry indicates that the bibliographic entry with label eM57a has been assigned the number 4, so \cite\{eM57a\} produces [4].

There is an aux file for the source file being processed, and another one for each file included in the main file by an \include command.

No auxiliary file is written if the \nofiles command is given. The message
No auxiliary output files.
in the \log file reminds you that \backslash nofiles is in effect.
The log file contains all the information shown in the log window during the typesetting. The dvi file contains the typeset version of the source file.

There are five auxiliary files that store information for special tasks. They are written only if that special task is invoked by a command and there is no \nofiles command. The additional auxiliary files are
glo Contains the glossary entries produced by \backslash glossary commands. A new file is written only if there is a
\makeglossary
command in the source file (see Section 17.6).
lof Contains the entries used to compile a list of figures. A new file is written only if there is a
\listoffigures
command in the source file (see Section 10.4.3).
lot Contains the entries used to compile a list of tables. A new file is written only if there is a
\listoftables
command in the source file (see Section 10.4.3).
toc Contains the entries used to compile a table of contents. A new file is written only if there is a
\tableof contents
command in the source file (see Section 18.2).
For information about the auxiliary files created by BibTEX and MakeIndex, see Sections 16.2.3 and 17.3, respectively. Some classes and packages create additional auxiliary files (see Section 13.2.3 for an example).

Versions

A complete $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ distribution consists of hundreds of files, all of which interact in some way. Since most of these files have had many revisions, you should make sure that they are all up-to-date and compatible with each other. You can check the version numbers and dates by reading the first few lines of each file in a text editor or by checking the dates and version numbers that are shown on the list created by the command \listfiles, which I discuss later in this section.

LATEX has been updated every year. While writing this book, I used the version of LATEX that was issued on December 1, 2005.

When you typeset a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ prints its release date in the log file with a line such as

```
LaTeX2e <2005/12/01>
```

If you use a ${ }^{A T} \mathrm{~T} X$ feature that was introduced recently, you can put a command such as the following into the preamble of your source file:
\NeedsTeXFormat\{LaTeX2e\}[2004/12/01]
This command specifies the date of the oldest version of ETEX that may be used to typeset your file. If someone attempts to typeset your file with an older version, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ generates a warning.

The AMS math package amsmath is at version 2.13, the document classes at version 2.26, and the AMSFonts set is at version 2.2d. See Section E. 1 for more information on obtaining updated versions.

If you include the \listfiles command in the preamble of your document, the \log file contains a detailed listing of all the files used in the typesetting of your document. Here are the first few (truncated) lines from such a listing:

```
*File List*
    book.cls 1999/01/07 v1.4a Standard LaTeX document class
    leqno.clo 1998/08/17 v1.1c Standard LaTeX option
        (left equation numbers)
    bk10.clo 2005/09/16 v1.4f Standard LaTeX file
            (size option)
MiL4.sty 2006/09/15 Commands for MiL4
amsmath.sty 2000/07/18 v2.13 AMS math features
amstext.sty 2000/06/29 v2.01
    amsgen.sty 1999/11/30 v2.0
    amsbsy.sty 1999/11/29 v1.2d
    amsopn.sty 1999/12/14 v2.01 operator names
    amsthm.sty 2004/08/06 v2.20
verbatim.sty 2003/08/22 v1.5q LaTeX2e package for
    verbatim enhancements
    amsxtra.sty 1999/11/15 v1.2c
    eucal.sty 2001/10/01 v2.2d Euler Script fonts
    amssymb.sty 2002/01/22 v2.2d
amsfonts.sty 2001/10/25 v2.2f
    omxcmex.fd 1999/05/25 v2.5h Standard LaTeX
    font definitions
latexsym.sty 1998/08/17 v2.2e Standard LaTeX package
        (lasy symbols)
        amscd.sty 1999/11/29 v1.2d
        alltt.sty 1997/06/16 v2.0g defines alltt environment
    xspace.sty 2006/02/12 v1.11 Space after command
    names (DPC,MH)
graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics
        (DPC,SPQR)
    keyval.sty 1999/03/16 v1.13 key=value parser (DPC)
graphics.sty 2006/02/20 v1.0o Standard LaTeX Graphics
        (DPC,SPQR)
    trig.sty 1999/03/16 v1.09 sin cos tan (DPC)
```

This list looks quite up-to-date (in fact, it is completely up-to-date). To confirm
this, open the file alltt. sty in the latest $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution. You find the lines

```
\ProvidesPackage{alltt}
    [1997/06/16 v2.Og defines alltt environment]
```

that explain the date found in the listing.

D. 4 Interactive $\operatorname{LAT}_{E} X$

If $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ cannot carry out your instructions, it displays a prompt and possibly an error message (see Section 4.3.1) in the log window.
 - The ** prompt means that ETEX needs to know the name of a source file to typeset. This usually means that you misspelled a file name, you are trying to typeset a document that is not located in ETEX's current folder, or that there is a space in the name of your source file.
 - The ? prompt indicates that $\mathrm{LATEX}_{\mathrm{E}} \mathrm{X}$ has found an error in your source file, and wants you to decide what to do next. You can try to continue typesetting the file by pressing

- Return

 - q to typeset in quiet mode, not stopping for errors. Depending on the nature of the error, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ may either recover or generate more error messages
 - x to stop typesetting your file
 - h to get advice on how to correct the error
 - If you have misspelled the name of a package in a command,orif${}^{\text{ETTE}}\mathrm{X}$cannotfindafile,itdisplaysamessagesimilartothefollowing:undefined

```
! LaTeX Error: File 'misspelled.sty' not found.
Type X to quit or <RETURN> to proceed,
or enter new name. (Default extension: sty)
```

Enter file name:

You can either type the correct name of the file at the prompt, or type x to quit $\mathrm{IATEX}^{\mathrm{E}}$.
 - The * prompt signifies that $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ is in interactive mode and is waiting for instructions. To get such a prompt, comment out the line
\end\{document\} }
in a source file, then typeset the file. Interactive instructions, such as \show and \showthe (see Section 15.1.7) may be given at the * prompt. To exit, type
\end\{document\} }
at the $*$ prompt, and press Return.
 - If you get the * prompt and no error message, type \stop and press Return.

D. 5 Separating form and content

In Section 4.3.2, we discuss logical and visual design and how $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ allows you to concentrate on the logical design and takes care of the visual design.
${ }^{\mathrm{AT}} \mathrm{E} \mathrm{X}$ uses four tools to separate the logical and visual design of a document:

1. Commands Information is given to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ in the arguments of commands. For instance, title page information is given in this form. The final organization and appearance of the title page is completely up to the document class and its options.
A more subtle example is the use of a command for distinguishing a term or notation. For instance, you may want to use an \env command for environment names. You may define \env as follows:
\newcommand\{\env\}[1]\{\texttt\{\#1\}\}

This gives you a command that typesets all environment names in typewriter style (see Section 5.6.2). Logically, you have decided that an environment name should be marked up. Visually, you may change your decision any time. By changing the definition to
\newcommand\{\env\}[1]\{\textbf\{\#1\}\}
all environment names are typeset in bold (see Section 5.6.5).
The following, more mathematical, example is taken from sampartu.tex (see Section 11.3 and the samples folder). This article defines the construct $D^{\langle 2\rangle}$ with the command
\newcommand\{\Dsq\}\{D^\{\langle 2 \rangle\}\}

If a referee or coauthor suggests a different notation, editing this one line changes the notation throughout the entire article.
2. Environments Important logical structures are placed within environments. For example, list items are typed within a list environment (see Section 6.2) and formatted accordingly. If you later decide to change the type of the list, you can do so by simply changing the name of the environment.
3. Proclamations You can change the style or numbering scheme of any proclamation at any time by changing that proclamation's definition in the preamble. See the typeset sampart article on pages 286-288 for examples of proclamations typeset with different styles.
4. Numbering and cross-referencing Theorems, lemmas, definitions, sections, and equations are logical units that can be freely moved around. ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ automatically recalculates the numbers and cross-references.

You write articles to communicate your ideas. The closer you get to a separation of logical and visual design, the more you are able to concentrate on that goal. Of course, you can never quite reach this ideal. For instance, a line too wide warning (see Sections 2.3 and 5.7.1) is a problem of visual design. When a journal changes the document class in an article you submitted, unless the new document class retains the same fonts and line width of the document class you used, new line too wide problems arise. $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ is successful in automatically solving visual design problems well over 95% of the time. That is getting fairly close to the ideal.

APPENDIX

E

$L^{A T} E^{X} X$ and the Internet

While $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ is pretty stable, the rest of the world around us is changing very fast and the Internet plays an ever larger role in our lives. This appendix deals with the Internet as a useful source of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ information.

The Internet is clearly the main repository of all matters $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, and the Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network (CTAN) is the preeminent collection of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-related material. Section E. 1 discusses how and where to find the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution, AMS and ${ }^{\text {ETH }} \mathrm{E}$ X packages, and the sample files for this book on CTAN.

Various international $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user groups (especially TUG , the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Users Group) and the American Mathematical Society play a significant role in supporting $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$. I discuss some of the major user groups in Section E.2.

Finally, you find a great deal of useful information on the Internet concerning ${ }^{\mathrm{AT}} \mathrm{E}$ E. I provide some pointers in Section E.3.

E. 1 Obtaining files from the Internet

Say you are interested in using Piet van Oostrum's fancyhdr package mentioned in Section 10.6. Chances are you can go ahead and use it, your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ installation already has it. In this age of gigantic hard disks, your $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ installation places pretty much
everything on your computer. But what if your version of f ancyhdr needs updating or you need a new package. How you go about getting it?

We discuss below the proper way of doing this, with an FTP client or a Web browser. But maybe the simplest approach is to google fancyhdr. The first line of the first entry of the complete list of 82,100 responses is

The TeX Catalogue OnLine, Entry for fancyhdr, Ctan Edition
Clicking on it takes you to a page describing the package. You can get the package by clicking on Download. It is this simple.

In general, there are two types of Internet sites from which you can download files:
 - FTP sites (using the file transfer protocol)
 - Web sites (using the HTTP protocol)

To access them, use a client application on your computer to connect to a server on another machine. Today, most Web browsers, which are designed to connect to Web sites, also handle FTP transfers.

All operating systems include a browser and an FTP client as part of the system.

The Comprehensive $T_{E} X$ Archive Network

The Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network (CTAN) is the preeminent collection of $\mathrm{T}_{\mathrm{E}} \mathrm{X}-$ related material on the Internet. There are three main CTAN hosts:
 - U.S.
 - FTP address: ftp://tug.ctan.org/
 - Web address: http://www.ctan.org/
 - U.K.
 - FTP address: ftp://ftp.tex.ac.uk/
 - Web address: http://www.tex.ac.uk/
 - Germany
 - FTP address: ftp://ftp.dante.de/
 - Web address: http://www.dante.de/

If you go to a CTAN site, at the very root you find README. structure, a very important file. It describes the bottom of the archive tree.
 - biblio Systems for maintaining and presenting bibliographies within documents typeset using $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$
 - digests Collections of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ mailing list digests, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-related 'electronic magazines', and indexes, etc., of printed publications
 - dviware Printer drivers and previewers, etc., for DVI files
 - fonts Fonts written in Metafont, and support for using fonts from other sources (e.g., those in Adobe Type 1 format)
 - graphics Systems and $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros for producing graphics
 - help FAQs and similar direct assistance, the catalogue
 - indexing Systems for maintaining and presenting indexes of documents typeset using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.
 - info Manuals and extended how-to information, errata for TEX-related publications, collections of project (e.g., ETEX and NTS) documents, etc.
 - language Support for various languages
 - macros $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros. Several directories have significant sub-trees:
 - macros/context The Context distribution
 - macros/generic Macros that work in several environments
 - macros/latex The LATEX distribution and contributed matter
 - macros/plain Donald Knuth's example macro set
 - nonfree Material which is not freely-usable
 - obsolete Material which is now obsolete, including all of LATEX 2.09
 - support $\mathrm{TEX}_{\mathrm{E}}$ support environments and the like
 - systems $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ systems. Organized by operating environment, but also including:
 - systems/knuth Donald Knuth's current distribution
 - systems/generic Complete systems that can potentially operate in more than one operating environment
 - tds The $\mathrm{T}_{\mathrm{E} X}$ Directory Structure standard
 - tools Tools of use for the archive maintainers
 - usergrps Information supplied by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ User Groups
 - web 'Literate Programming' tools and systems

All of these have many subdirectories, for instance, info has the examples subdirectory that contains the sample files for this book. This is a rather new subdirectory, older sample files are in info proper.

So if you are interested in $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$, you go to biblio/, and so on. The explanations are clear. All matters $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ are in macros/latex/, which has a number of subdirectories, including
 - base-the current $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution
 - required—packages that all ${ }^{\mathrm{ET}} \mathrm{EX}$ installations should have, such as the AMS packages, the IATEX tools, Babel, graphics, and PSNFSS for using PostScript fonts
 - contrib-user-contributed packages
 - unpacked-the base $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution in a form that can be downloaded and placed directly in your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ input folder

There are many full mirrors, exact duplicates, of CTAN and many partial mirrors. At the root of CTAN you find the README.mirrors file listing them all. To reduce network load, you should try to use a mirror located near you.

Many CTAN sites now have easy search access with Web browsers. For instance, point your browser to
http://tug.ctan.org/search.html
In the search field, type fancyhdr, and you get a long list of links. Click on

```
macros/latex/contrib/fancyhdr.zip
```

and you are done. If you type gratzer, you get the links to the help files of my various books-in info/ and info/examples/.

The AMS packages

Chances are that you received the AMS packages with your $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution. If you did not, or if you want to update them, go to a CTAN site:
 - /tex-archive/fonts/amsfonts/latex/
 - /tex-archive/macros/latex/required/amslatex/
or to the AMS site:
http://www.ams.org/tex/amslatex.html

The sample files

The sample files for this book, introduced in Section 1.2 on page 4, live on CTAN in the directory
/info/examples/Math_into_LaTeX-4
You can go to /info/examples/ and download it, or you can search for the directory name Math_into_LaTeX-4. If you forget these, just search for gratzer.

You can also find the Short Course (Part I) on CTAN:
/info/Math_into_LaTeX-4/Short_Course.pdf

E. 2 The $\boldsymbol{T}_{\boldsymbol{E}} X$ Users Group

The $\mathrm{T}_{\mathrm{E}} X$ Users Group (TUG) does a tremendous job of supporting and promoting $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, by publishing a journal, TUGboat, three times a year and organizing an annual international conference. TUG also helps support the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 3$ team in maintaining $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and developing ITTEX3.

Consider joining TUG if you have an interest in ETEX. TUG's contact information is:

1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
Telephone: (503) 223-9994
E-mail: office@tug.org
Web page: http://www.tug.org/
If you are a member, you receive every year a brand new $\mathrm{T}_{\mathrm{E}} X$ Live DVD, which contains everything you need to install $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ as described in Appendix A.

International $\boldsymbol{T}_{\boldsymbol{E}} \mathrm{X}$ users groups

There are also many $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users groups that are geographic or linguistic in nature. Some of the main groups include
 - Dante in Germany www. dante.org
 - GUTenberg in France www.gutenberg. eu.org
 - NTG in the Netherlands www.ntg.nl
 - UK TUG in the U.K. uk.tug.org

Click on User groups on the home page of TUG.

The American Mathematical Society

The AMS provides excellent technical advice for using the AMS packages and AMSFonts. You can reach the AMS technical staff by e-mail at tech-support@ams.org, or by telephone at (800) 321-4267 or (401) 455-4080. You can also find a great deal of helpful $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ information on the AMS Web site in the Author Resource Center.

E. 3 Some useful sources of $E T_{E} X$ information

You may find useful the Frequently Asked Questions (FAQ) documents maintained on CTAN in the /tex-archive/help/ directory. The U.K. TEX Users Group maintains its own FAQ list at
http://www.tex.ac.uk/cgi-bin/texfaq2html?introduction=yes
The AMS FAQ is at
http://www.ams.org/authors/author-faq.html
You can also ask most $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-related questions in the Usenet newsgroup comp.text. tex.

Most $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ implementations have discussion groups. For the MiKTeX discussion group go to MiKTeX. org and for the WinEdt editor/frontend go to WinEdt.org. On the Mac side, go to
http://www.esm.psu.edu/mac-tex/
or to the TeXShop user forum at
http://www.apfelwiki.de/forum/viewforum.php?f=6
Another useful place is Sebastian Rahtz's Interesting TEX-related URLs
http://www.tug.org/interest.html
containing many links to many other useful sites.

APPENDIX

3

PostScript fonts

In the late 1990s, as we mentioned in Section D.1.4, a consortium (the AMS, Blue Sky Research, and Y\&Y) released a free PostScript version of the CM and AMS fonts, so everyone could switch to PostScript fonts, a tremendous advance for ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ users.

The Computer Modern fonts were originally "hardwired" into $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. Many users liked $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ but disliked the Computer Modern font, and with the spread of personal computers and PostScript laser printers, it was imperative that more PostScript fonts be integrated into $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. In Section F.1, I describe how easy it is to use standard PostScript fonts, such as Times. In Section F.2, I show you how to replace the CM and AMS fonts in a $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ document with the Lucida Bright fonts.

And now an apology. "PostScript font" is the terminology that lay people, like me, use. The proper terminology is Adobe Type 1 format font. PostScript has provision for a wide range of fonts including Type 3 and Type 1 (as well as Type 42 and Type 5, and so on). The Type 3 font category is very general and includes bitmap fonts, grayscaled fonts, and so on. Type 1 fonts are tightly constrained outline fonts, which can be accurately rendered at almost any resolution, and have a special purpose code that deals only with Type 1 fonts.

F. 1 The Times font and MathTime

In this section, we step through the process of incorporating the Adobe Times font into a $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ document to replace the Computer Modern text fonts, and, optionally, of using the MathTime Pro 2 math fonts to replace the Computer Modern math fonts. To do so, we use the PSNFSS packages (see Section 12.3).

A document class specifies three standard font families (see Section 5.6.2):
 - A roman (or serif) font family
 - A sans serif font family
 - A typewriter style font family

The times package in the PSNFSS distribution makes Times the roman font family, Helvetica the sans serif font family, and Courier the typewriter style font family.

Setting up Times

First, install the Adobe Times, Helvetica, and Courier PostScript fonts and their $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ font metric files.

Now typeset the psfonts.ins file-in the PSNFSS distribution. This produces sty files for the standard PostScript fonts. The Times style file is called times.sty. If you do not already have it, copy it into a folder ETEX can access (see Sections A.1.6 and A.2.6).

To use the times package, you must have the font definition (fd) files for the fonts specified. By checking the times.sty file, you see that you need three files for the three fonts: Times, Helvetica, and Courier. In the times package these are named ptm, phv, and pcr, respectively. The three file names, each comprising three characters, are the font names in the naming scheme devised by Karl Berry. In ptm, p stands for the foundry's name (in this case, Adobe), tm stands for Times, hv for Helvetica, and cr for Courier. The corresponding font definition files are named ot1ptm.fd, ot1phv.fd, and ot $1 \mathrm{pcr} . f \mathrm{fd}$, respectively. OT1 designates the old $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ font encoding scheme, which is not discussed here. You can get these files from CTAN (see Section E.1). If you do not already have it, copy it into a folder $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ can access (see Sections A.1.6 and A.2.6).

Using Times

In the preamble of your document, type
kage\{times\}afterthe\documentclassline.ThenTimesbecomestheroman,Helveticathesansserif,andCourierthetypewriterstyledocumentfontfamily.Thatisallthereistoit.undefined

Using the times package changes the document font family throughout your document. To switch to Times only occasionally, type

$\{\backslash$ fontfamily\{ptm\}\selectfont phrase\}

The text preceding and following this construct is not affected. For example,
$\{\backslash f o n t f a m i l y\{p t m\} \backslash s e l e c t f o n t$
This text is typeset in the Times font.\}
typesets as

This text is typeset in the Times font.

Similarly,
\fontfamily\{ptm\}\selectfont
This text is typeset in the Times font.
\normalfont
also typesets the same phrase in Times. Recall that the \normalfont command restores the document font family (see Section 5.6.2).

Setting up MathTime

Looking at a mathematical article typeset with the Times text font, you may find that the Computer Modern math symbols look too thin. To more closely match Times and other PostScript fonts, Michael Spivak modified the CM math symbols, calling these modified fonts MathTime Pro 2. You can purchase these fonts from Personal TeX,
http://store.pctexstore.com/
Install the MathTime Pro 2 PostScript fonts and the $\mathrm{T}_{\mathrm{E} X}$ font metric files. If you do not already have them, copy from PSNFSS the files

```
mathtime.ins mathtime.dtx mtfonts.fdd
```

into a folder LATEX can access (see Sections A.1.6 and A.2.6).
Typeset mathtime.ins to produce the necessary fd files and the mathtime.sty file.

Using MathTime

If you want to use Times as the document font family and MathTime as the default math font, specify

```
\usepackage[LY1]{fontenc} %specify font encoding
\usepackage[LY1,mtbold]{mathtime} %switch math fonts
\usepackage{times} %switch text fonts
```

in the preamble of your document.
The mathtime package has many options. See its documentation for more information; typeset mathtime. dtx to get it.

F. 2 Lucida Bright fonts

Another alternative to Computer Modern fonts is Lucida Bright for both text and math fonts. You can purchase the Lucida Bright fonts from tug.

Copy the files

```
lucidabr.ins, lucidabr.dtx,
```

lucidabr.fdd,lucidabr.yy
into your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ input folder (see Sections A.1.6 and A.2.6). Typeset lucidabr.yy, producing the lucidabr.sty file and a large number of $f d$ files.

Now add the lines

```
\usepackage[LY1]{fontenc} %specify font encoding
\usepackage[LY1]{lucidabr} %switch text and math fonts
```

in the preamble of your document. The lucidabr package has many options. See its documentation-typeset lucidabr. dtx to get it.

F. 3 More PostScript fonts

You can obtain PostScript fonts from a wide variety of sources. There are many free PostScript fonts on CTAN. Table F. 1 is a short list of the more prominent commercial vendors.

See also the Web page at http://www.microsoft.com/typography/ for a lot of useful information and links.

| Foundry | URL |
| :--- | :--- |
| Adobe | www.adobe.com/type/ |
| Agfa/Monotype | www.agfamonotype.com/ |
| Berthold | www.bertholdtypes.com/ |
| Bitstream | www.bitstream.com/ |
| Coniglio | www.conigliotype.com/ |
| Emigre | www.emigre.com/ |
| Hoefler | www.typography.com/ |
| ITC | www.itcfonts.com/ |
| Linotype | www.linotype.com/ |
| Monotype | www.fonts.com/ |
| Scriptorium | www.fontcraft.com/ |
| Vintage | www.vintagetype.com/ |

Table F.1: Some type foundries on the Internet.

APPENDIX

LATEX localized

If the language in which you write articles is not American English and/or your keyboard is not the standard American keyboard, you may find it annoying and sometimes difficult to use standard ETEX. The annoyance may start with finding out how to type ~ for a nonbreakable space, to $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$'s inability to properly hyphenate $\mathrm{Gr} \backslash$ " $\{\mathrm{a}\}$ tzer, and $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$'s inability to use a different alphabet.

Many of the improvements to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ in recent years have been to localize $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$, that is, to adapt $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ for use with languages other than American English and keyboards other than standard American keyboards. The

babel fontenc inputenc

packages are the major players, along with new font-encoding schemes, including the T 1 encoding. You find these packages as part of the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ distribution (see Section 12.3).

The babel package is described in detail in Johannes Braams, Babel, a multilingual package for use with LATEX's standard document classes [7] and in Chapter 9 of The ${ }^{L T} T_{E} X$ Companion, 2nd edition [46].

If you are interested in using a localized $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, you should turn to the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user group for that linguistic group to find out what is available. You should also consult
the babel user guide.
At a minimum, a supported language has translated redefinable names (see Table 15.1), and a localized variant of the \today command. Two very advanced language adaptations are German and French.

We first illustrate the use of the babel package with the German language, which gives you a rich set of features, including
 - Allows you to type "a for \"\{a\}
 - Introduces "s for sharp s (eszett)
 - Introduces "ck for a ck that becomes k-k when hyphenated

Type the following test file: (german.tex in the samples folder):

```
\documentclass{article}
\usepackage[german] {babel}
\usepackage[T1]{fontenc}
```

```
\begin{document}
\section{H"ullenoperatoren}
Es sei $P$ eine teilweise geordnete Menge. Wir sagen,
dass in $P$ ein \emph{H"ullenoperator} $\lambda$
erkl"art ist, wenn sich jedem $a \in P$ ein eindeutig
bestimmtes $\lambda(a) \in P$ zuordnen l"a"st, so dass
die folgenden Bedingungen erf"ullt sind.
\end{document}
```

And here it is typeset:

1 Hüllenoperatoren

Es sei P eine teilweise geordnete Menge. Wir sagen, dass in P ein Hüllenoperator λ erklärt ist, wenn sich jedem $a \in P$ ein eindeutig bestimmtes $\lambda(a) \in P$ zuordnen läßt, so dass die folgenden Bedingungen erfüllt sind.

The second example uses the following options for the packages:

```
\usepackage[T2A]{fontenc}
\usepackage[koi8-u] {inputenc}
\usepackage[ukrainian] {babel}
```

The encoding koi8-u is appropriate for Ukrainian.
And here is the typeset Ukrainian sample file:

Поняття теорії ігор

Віктор Анякін

31 липня 2006 p.

Логічною основою теорії ігор є формалізація трьох понять, які входять в її визначення і є фундаментальними для всієї теорії:
 - Конфлікт,
 - Прийняття рішення в конфлікті,
 - Оптимальність прийнятого рішення.

Ці поняття розглядаються в теорії ігор у найширшому сенсі. Їх формалізації відповідають змістовним уявленням про відповідні об'єкти.

Змістовно, конфліктом можна вважати всяке явище, відносно якого можна казати про його учасників, про їхні дії, про результати явищ, до яких призводять ці дії, про сторони, які так чи інакше зацікавлені в таких наслідках, і про сутність цієї зацікавленості.

Якщо назвати учасників конфлікту коалічіями дїі (позначивши їхню множину як \Re_{D}, можливі дії кожної із коаліції дії - її стратегіями (множина всіх стратегій коаліції дії K позначається як S), результати конфлікту - ситуаціями (множина всіх ситуацій позначається як S; вважається, що кожна ситуація складається внаслідок вибору кожної із коаліцій дії деякої своєї стратегії, так, що $S \subset \prod_{K \in \Re} S_{K}$), зацікавлені сторони - коаліціями інтересів (ix множина - \Re_{I}) i, нарешті, говорити про можливі переваги для кожної коаліції інтересів K однієї ситуації s^{\prime} перед іншою $s^{\prime \prime}$ (цей факт позначається як $s^{\prime} \underset{K}{\prec} s^{\prime \prime}$), то конфлікт в цілому може бути описаний як система

$$
\Gamma=\left\langle\Re_{D},\left\{S_{K}\right\}_{K \in \Re_{D}}, S, \Re_{I},\{\underset{K}{\prec}\}_{K \in \Re_{I}}\right\rangle
$$

Така система, яка представляє конфлікт, називається грою. Конкретизації складових, які задають гру, призводять до різноманітних класів ігор.

APPENDIX

Final thoughts

In this final appendix, I will outline some of the material I did not discuss and suggest some additional reading to learn more about $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, typesetting, and writing. We conclude by looking at some projects that may come to fruition soon.

H. 1 What was left out?

The mission statement in the introduction stated that my goal for this book was to provide you with a good foundation in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ including the AMS packages, and that we would not cover programming or visual design. As a result, I have omitted a great deal of material.

H.1.1 LIT \boldsymbol{E}^{X} omissions

${ }^{\mathrm{LT}} \mathrm{E} \mathrm{X}$ has some additional features that I have not discussed in this book:

1. The picture environment allows you to draw simple pictures with lines and circles.
2. The array, tabular, and tabbing environments have a number of additional features.
3. $\mathrm{LA}_{\mathrm{E}} X$ makes the style parameters of a document and of most $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ constructs available to the user for modification. Very few of these parameters have been mentioned in this book.
4. Low-level NFSS commands provide finer control over fonts.
The following are some pointers to additional information on these topics:

1. Drawing with the picture environment has the advantage of portability. This environment is described in Leslie Lamport's $L^{A T} T_{E} X$: A Document Preparation System, 2nd edition [43]. A very advanced internal drawing system is TikZ by Till Tantau, see
http://sourceforge.net/projects/pgf/
However, I believe that the best approach is to use a drawing application that can save your illustrations in EPS or PDF format so that you can include them in your document using the graphicx package (see Section 10.4.3).
2. The tabbing, tabular, and array environments-and their extensions-are described in detail in Leslie Lamport's $L A T_{E} X$: A Document Preparation System, 2nd edition [43] and Chapter 5 of The ${ }^{L T} T_{E} X$ Companion, 2nd edition [46].
3. The style parameters for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ are set by the document class. When a publisher changes the document class loaded by your document, the style parameters are changed to its specifications. If you explicitly change style parameters in your document, a publisher will have trouble getting your source file to conform to their publishing style. If you must change any basic style parameters, be sure to explain what you did with comments.
4. There are two types of commands defined in the NFSS, high-level and low-level commands. The latter are, by and large, meant for style designers and package writers. Nevertheless, anyone who wants to use fonts other than Computer Modern (the default) would do well to read Chapter 7 of The $L^{A} T_{E} X$ Companion, 2nd edition [46].
Low-level NFSS commands are briefly mentioned in Section 5.6.9 and are used in Appendix F.

H.1.2 $T_{E} X$ omissions

Almost all discussion of Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was omitted from this book. $\mathrm{T}_{\mathrm{E} X}$ is a powerful programming language, allowing you to design any page layout or formula. Remember, however, that to change any design feature, you should be knowledgeable not only about $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, but also about document design. Also keep in mind that making such changes may make it difficult or impossible for a publisher to make your document conform to its own specifications.

H. 2 Further reading

Much documentation is included with the ETEX and the AMS distributions and many third-party packages are also well documented. You will also find a great deal of documentation on CTAN.

As you have no doubt noticed, there are many references to The LATE ${ }_{E}$ X Companion, 2nd edition [46] in this book. While it is not a beginner's book, it is indispensable for advanced ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ users with special needs. It is also the best overview of more than a hundred important packages. For package writers and students of NFSS, it is the basic textbook. For graphics work, read The $L^{A T} T_{E} X$ Graphics Companion [17], and on Web publishing The ${ }^{L A T} T_{E} X$ Web Companion [18].

Learning $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is a bit more complicated than learning $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$. You may want to start with Wynter Snow's $T_{E} X$ for the Beginner [57]. It introduces many of $T_{E} X$'s basic concepts in a very relaxed style with many examples. The notes on $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ make the book especially useful, and the author gives many examples of writing macros. The use of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ as a programming language is not discussed.

Raymond Seroul and Silvio Levy's A Beginner's Book of $T_{E} X \quad$ [56] is another good introduction. This book also includes a chapter on $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ programming. Donald E . Knuth's The $T_{E} X$ book [38] provides an easy introduction to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, as long as you avoid the difficult parts marked by dangerous bend signs. Paul W. Abrahams, Karl Berry, and Kathryn A. Hargreaves' $T_{E} X$ for the Impatient [1] explains many $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands, grouped by topic. This book has a very useful, nonsequential approach. Finally, Victor Eijkhout's $T_{E} X$ by Topic: A $T_{E} X n i c i a n ' s ~ R e f e r e n c e ~[14] ~ i s ~ a n ~ e x c e l l e n t ~ r e f e r e n c e ~ b o o k ~$ on $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, mainly for experts. For many tutorial examples, see the articles and columns in TUGboat (see Section E.2).

For advice to authors of mathematical articles and books, see Mathematics into Type [58] by Ellen Swanson (updated by Arlene Ann O'Sean and Antoinette Tingley Schleyer). You may find it interesting to see how many of the rules in Swanson's book have been incorporated into $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$. The definitive book on style (in North America) is The Chicago Manual of Style, 15th edition [11]. Two other views on copy editing are presented in Judith Butcher's Copy Editing: The Cambridge Handbook [9] and Hart's Rules for Compositors and Readers at the University Press, Oxford by Horace Hart [35], updated in R. M. Ritter's New Hart's Rules: The Handbook of Style for Writers and Editors [54]. The special problems of writing about math and computer science are admirably dissected in Lyn Dupré's BUGS in Writing: A Guide to Debugging Your Prose, 2nd edition [13].

Most people who write math have little or no background in typography, the art of printing with type. But when you become a typesetter, it can be useful to learn a little bit about typography. I would highly recommend Robert Bringhurst's The Elements of Typographic Style [8]. See also Ruari McLean's The Thames and Hudson Manual of Typography [44] and Alison Black's Typefaces for Desktop Publishing: A User Guide [6].

Harley Hahn's A Student's Guide to Unix [34] provides an excellent introduction to UNIX.

H. 3 What's coming

I do not have a very good record forecasting what important projects will be completed in the near future. In 1995, when I completed my second big $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ book, I thought that ${ }^{\mathrm{E} T} \mathrm{~T}_{\mathrm{E}} \mathrm{X} 3$ was just around the corner. Now, more than a decade later, I am still hopeful. There seems to be some movement. In 2000, I thought that the new version of BIBTEX is just around the corner ...

Today, maybe most progress is happening with Unicode, a character encoding standard developed by the Unicode Consortium in cooperation with W3C and ISO, specifically, with ISO/IEC/JTC 1/SC2/WG2, which is responsible for refining the specification and expanding the character set of ISO/IEC 10646. The goal of Unicode is to provide a uniform encoding for all the characters we need in all human languages, collectively, in addition to the thousands of symbols used in science, in particular, in mathematics. The project, STIX, which started more than 10 years ago, may see the light of day before this year is out. STIX will provide fonts that include thousands of mathematical symbols encoded in Unicode.

A number of important projects were and are undertaken to develop a Unicode based $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, namely, Omega, Aleph, and $\mathrm{X}_{\mathrm{G}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

The first of these, Omega, was developed as an extension of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, to use with multilingual texts. While Omega showed a lot of promise in the mid-1990s, its development stopped. The second of these, Aleph, merged e-TeX with the Omega codebase. In 2006, Omega 2 has emerged, to continue the work.

The most promising project is $\mathrm{X}_{\mathrm{G}} \mathrm{TE} \mathrm{X}$ from Jonathan Kew who works for SIL International. $\mathrm{X}_{\mathrm{G}} \mathrm{TEX}_{\mathrm{E}}$ is a typesetting system that extends T_{E} to work with Unicode and modern font technologies such as OpenType. $\mathrm{X}_{\mathrm{G}} \mathrm{T} \mathrm{EX}$ was originally developed for Mac OS X, but is now available on a variety of operating systems including Windows and Linux.
$\mathrm{X}_{\mathrm{H}} \mathrm{TEX}^{2}$ is approaching version 1, and is considered very solid. For more information, see the $\mathrm{X}_{\mathrm{H}} \mathrm{TEX}^{\mathrm{X}}$ home page
http://scripts.sil.org/xetex
There are a number of promising attempts to bring $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ into the 21 st century. LuaTE $_{E} X$, see at
http://luatex.org/documentation.html
has an ambitious set of goals and a tight timetable. A similar project, $\varepsilon_{\chi} \mathrm{T}_{\mathrm{E}} \mathrm{X}$, see at
http://extex.org/
is based on the New Typesetting System that was started in 1992. It reached alpha stage
in 2000. Many parts of the system are ready and we may soon see an alpha release.
Another very important area of development is OpenType, a successor font format of TrueType by Apple computer and the Type 1 font format of Adobe. It became an ISO standard "Open Font Format" in 2006. Microsoft's Vista operating system uses Open Type. The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts are not yet available in this format.

Bibliography

[1] Paul W. Abrahams, Karl Berry, and Kathryn A. Hargreaves, $T_{E} X$ for the Impatient. Addison-Wesley, Reading, MA, 1990.
[2] Adobe Systems, PDF Reference, Version 1.6. 5th edition. Adobe Press, 2004.
[3] American Mathematical Society, AMSFonts, Version 2.2 User's Guide. Providence, RI, 1997.
[4] _, User's Guide for the amsmath Package (version 2.0). Providence, RI, 1999. (Revised 2002.)
[5] , Using the amsthm package (version 2.20). Providence, RI, 2004.
[6] Alison Black, Typefaces for Desktop Publishing: A User Guide. Architecture Design and Technology Press, London, 1990.
[7] Johannes Braams, Babel, a multilingual package for use with $L^{A T}{ }_{E} X$'s standard document classes. 2005, on CTAN.
[8] Robert Bringhurst, The Elements of Typographic Style. Hartley \& Marks Publishers, 2004.
[9] Judith Butcher, Caroline Drake, Maureen Leach, Butcher's Copy-editing: The Cambridge Handbook for Editors, Copy-editors and Proofreaders. 4th edition. Cambridge University Press, London, 2006.
[10] Pehong Chen and Michael A. Harrison, Index preparation and processing. Software Practice and Experience 19 (9) (1988), 897-915.
[11] The Chicago Manual of Style. 15th edition. University of Chicago Press, Chicago, 2003.
[12] Michael Doob, $T_{E} X$ Starting from 1 . Springer-Verlag, New York, 1993.
[13] Lyn Dupré, BUGS in Writing. A Guide to Debugging Your Prose. 2nd edition. AddisonWesley Professional, Reading, MA, 1998.
[14] Victor Eijkhout, $T_{E} X$ by Topic: A $T_{E} X n i c i a n ' s ~ R e f e r e n c e . ~ A d d i s o n-W e s l e y, ~ R e a d i n g, ~ M A, ~$ 1991. Free download at http://www.eijkhout.net/tbt/
[15] Michel Goossens, Frank Mittelbach, and Alexander Samarin, The $L^{A} T_{E} X$ Companion. Addison-Wesley, Reading, MA, 1994.
[16] Enrico Gregorio, Horrors in $L^{A} T_{E} X$: How to misuse $L^{A} T_{E} X$ and make a copy editor unhappy, TUGboat 26 (2005), 273-279.
[17] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach, The LATEX Graphics Companion. Addison-Wesley, Reading, MA, 1997.
[18] Michel Goossens and Sebastian Rahtz (with Eitan Gurari, Ross Moore, and Robert Sutor), The $L^{A T} T_{E} X$ Web Companion: Integrating $T_{E} X, h T M L$ and XML. Addison-Wesley, Reading, MA, 1999.
[19] George Grätzer, Math into $T_{E} X$: A Simple Introduction to $\mathcal{A} \mathcal{M} \mathcal{S}-L T_{E} X$. Birkhäuser Boston, 1993.
[20], $\mathcal{A} \mathcal{M} \mathcal{S}-L^{A} T_{E} X$. Notices Amer. Math. Soc. 40 (1993), 148-150.
[21] , Advances in $T_{E} X$ implementations. I. PostScript fonts. Notices Amer. Math. Soc. 40 (1993), 834-838.
[22] , Advances in $T_{E} X$ implementations. II. Integrated environments. Notices Amer. Math. Soc. 41 (1994), 106-111.
[23] , Advances in $T_{E} X$ implementations. III. A new version of ${ }^{A} T_{E} X$, finally. Notices Amer. Math. Soc. 41 (1994), 611-615.
[24] , Advances in $T_{E} X . I V$. Header and footer control in $L^{A} T_{E} X$. Notices Amer. Math. Soc. 41 (1994), 772-777.
[25] , Advances in $T_{E} X$. V. Using text fonts in the new standard ${ }^{L T} T_{E} X$. Notices Amer. Math. Soc. 41 (1994), 927-929.
[26] , Advances in $T_{E} X$. VI. Using math fonts in the new standard ${ }^{L T} T_{E} X$. Notices Amer. Math. Soc. 41 (1994), 1164-1165.
[27] , Math into ${ }^{L A} T_{E} X$: An Introduction to ${ }^{L T} T_{E} X$ and $\mathcal{A} \mathcal{M S}$ - $L^{A} T_{E} X$. Birkhäuser Boston, 1996. 2nd printing, 1998.
[28] , General Lattice Theory. 2nd edition. Birkhäuser Verlag, Basel, 1998. xix+663 pp.
[29] _ First Steps in $L^{A} T_{E} X$. Birkhäuser Boston, Springer-Verlag, New York, 1999.
[30] , Math into $L T_{E} X$. 3rd edition. Birkhäuser Verlag, Boston, Springer-Verlag, New York, 2000. xl+584 pp. ISBN: 0-8176-4131-9; 3-7643-4131-9
[31] , Turbulent transition, TUGboat 21 (2001), 111-113.
[32] , Publishing legacy document on the Web, TUGboat 22 (2001), 74-77.
[33] James Hafner, FoilTEX. A $L^{A} T_{E} X 2$ عclass for overhead transparencies. 2002.
[34] Harley Hahn, Harley Hahn's Student's Guide to Unix. 2nd edition. McGraw-Hill, New York, 1993.
[35] Horace Hart, Hart's Rules For Compositors and Readers at the University Press, Oxford. Oxford University Press, Oxford, 1991.
[36] Uwe Kern, Extending LATEX's color facilities: the xcolor package. December 21, 2005. http:
www.ukern.de\tex\xcolor.html
[37] Donald E. Knuth, The Art of Computer Programming. Volumes 1-3. Addison-Wesley, Reading, MA, 1968-1998.
[38] \qquad , The T_{E} Xbook. Computers and Typesetting. Vol. A. Addison-Wesley, Reading, MA, 1984, 1990.
[39] , $T_{E} X$: The Program. Computers and Typesetting. Vol. B. Addison-Wesley, Reading, MA, 1986.
[40] , The METAFONTbook. Computers and Typesetting. Vol. C. Addison-Wesley, Reading, MA, 1986.
[41] , METAFONT: The Program. Computers and Typesetting. Vol. D. AddisonWesley, Reading, MA, 1986.
[42] , Computer Modern Typefaces. Computers and Typesetting. Vol. E. AddisonWesley, Reading, MA, 1987.
[43] Leslie Lamport, $L^{A} T_{E} X$: A Document Preparation System. 2nd edition. Addison-Wesley, Reading, MA, 1994.
[44] Ruari McLean, The Thames and Hudson Manual of Typography. Thames and Hudson, London, 1980.
[45] Frank Mittelbach, An extension of the LATE X theorem environment. TUGboat 10 (1989), 416-426.
[46] Frank Mittelbach and Michel Goosens (with Johannes Braams, David Carlisle, and Chris Rowley), The LATE E^{X} Companion. 2nd edition. Addison-Wesley, Reading, MA, 2004.
[47] Frank Mittelbach and Chris Rowley, $L^{A T} T_{E} X 2.09 \rightarrow L^{A} T_{E} X 3$. TUGboat 13 (1) (1992), 96101.
[48] , $L T_{E} X-A$ new version of $L^{A} T_{E} X$. TEX and TUG NEWs 2 (4) (1993), 10-11.
[49] , The $L^{A} T_{E} X 3$ project. Euromath Bulletin 1 (1994), 117-125.
[50] , ${ }^{L T} T_{E} X 3$ in '93. TEX and tUG news 3 (1) (1994), 7-11.
[51] Frank Mittelbach and Rainer Schöpf, The new font family selection-user interface to standard LAT $E_{E} X$. TUGboat 11 (1990), 297-305.
[52] Oren Patashnik, $B I B T_{E} X i n g$. Document in the $\mathrm{BIBT}_{\mathrm{E}} X$ distribution.
[53] , BIBT T_{E}^{X} 1.0. TUGboat 15 (1994), 269-273.
[54] R. M. Ritter, New Hart's Rules: The Handbook of Style for Writers and Editors, Oxford. Oxford University Press, Oxford, 2005.
[55] Rainer Schöpf, A new implementation of the $L^{L T} E_{E} X$ verbatim and verbatim* environments. TUGboat 11 (1990), 284-296.
[56] Raymond Seroul and Silvio Levy, A Beginner's Book of $T_{E} X$. Springer-Verlag New York, 1995.
[57] Wynter Snow, $T_{E} X$ for the Beginner. Addison-Wesley, Reading, MA, 1992.
[58] Ellen Swanson, Mathematics into Type. Updated edition. Updated by Arlene Ann O'Sean and Antoinette Tingley Schleyer. American Mathematical Society, Providence, RI, 1999.
[59] Till Tantau, User's Guide to the Beamer Class. 2005.
http://latex-beamer.sourceforge.net

Index

Italic numbers indicate figures or tables, bold numbers indicate definitions. Special symbols are placed at the end of the Index.

A

a4paper (doc. class opt.), 298, 306
a5paper (doc. class opt.), 306
$\backslash \mathrm{AA}(\AA), 81,515$
\aa (å), 81,515
abbreviations
in bibliographic entries, 436-437
defining, 436
periods in, 66-67
using small caps for, 91,480
using ties (${ }^{\sim}$) with, 66
Abrahams, Paul W., 553, 557
absolute
names for equations, 201
units, $12,15,89,93,95,96,105,107,111$, 308, 403
abstract (text env.), 36, 68, 251, 285
in beamer document class, 326
in report document class, 303
placement of, 251, 285
abstract (bibl. com.), 425
\abstractname (redef. name), 375
abstracts, 36, 251, 326
in AMS document classes, 285
in presentations, 53-55
in report document class, 303
separate page for, 249,299
accents
European, 15, 79, 79-80, 519
hyphenation of words with, 82
in bibliographies, 427
in hyperref titles, 322
math, 25, 176-178, 183, 185, 301, 377, 483
double, 177
text, $9,15,69,79,79-80,516,519$
accents (pack.), 178
acronyms, using small caps for, 91, 480
acute (' acute text accent), 79, 516
\acute (x math accent), 177, 512
\addcontentsline (table of contents com.)
and lists of figures and tables, 476
arguments of, 473, 476
adding lines
to lists of figures and tables, 476
to tables of contents, 473-474
addition, 22, 63, 157
\address (top matter com.), 54, 296, 326
in letters, 309
optional arguments of, 277
rules for using, 277
with multiple authors, 281
address (BIBTEX database field), 424, 425
addresses
in letters, 309
of authors in articles, 44, 277, 281, 296
\addtocontents (table of contents com.)
and lists of figures and tables, 476
arguments of, 474, 476
\addtocounter (counter incr. com.), 402
\addtolength (counter setting com.), 405
adjusted
columns, 210, 231-242
formulas, 210, 231-242
flush left and right, 214
adjusting
interline spacing, 95, 98-99
placement of root with \sqrt, 162
Adobe
Acrobat Professional, 318, 319, 321, 325, 483
converting from Postscript to PDF, 319
placing hyperlinks in documents, 319
Portable Document Format (PDF), see under PDF
PostScript (PS), see PS
Reader, 53, 321, 325, 358, 486
Adobe Systems, 317-319, 557
\AE Aesc (Æ), 81, 515
\ae aesc (æ), 81, 515
\afterpage (delay com.), 312
afterpage (pack.), 312
afterwords, of books, 467
\aleph ($\$$ Hebrew char.), 501
\alert (beamer text style com.), 337
align (math align. env.), 30-31, 33, 208, 209, 210, 219-224, 230, 483, 524
annotated, 209
page breaks in, 242
align* (math align. env.), 31, 221, 226
alignat (math align. env.), 208, 210, 224-226
argument of, 226
aligned
formulas, 30-32, 207-211, 219-226, 230-232, 242, 298, 524
text in, 226-227
math environments, 242
align, 30-32, 208, 210, 219-224, 230, 242
alignat, 208, 210, 224-226
and \verb commands, 148
eqnarray, 222
flalign, 208, 210, 221
inserting lines of text in, 226
intercolumn space in, 209
subsidiary math environments, 227-231
aligned, 211, 227-230
alignedat, 227-230
split, 208, 211, 230-231, 298
aligned (subsid. math align. env.), 211, 227-230
and \allowdisplaybreaks commands, 243
alignedat (subsid. math align. env.), 227-230
and \allowdisplaybreaks commands, 243
alignment
of columns in tabular environments, 135, 136, 313
of formulas, see also under adjusted, 219-231
annotated, 32, 209
commands for, 214
flush left and right, 209
multiline, 30-33, 217-219
simple, 31, 30-31
of large symbols, 229-230
of text, $\mathbf{8}, 68,106, \mathbf{1 2 4}, 134,227,407$
centering, $8,14,54,124,124,134,137$, 227, 327, 414
command declarations for, 124, 137
flush left, 8, 14, 124
flush right, $8,14,106,124$
with trivlist environments, 414
of text boxes, vertical, 111
point
for annotations (\&\&), 32
for subformulas (\&), 30, 31, 33, 216, 218, 221
within text boxes, 107, 111
allowdisplaybreaks (display break com.), 242
and subsidiary math environments, 243
optional argument of, 243
alltt (disp. text env.), 159, 311
alltt (pack.), 147, 311, 534
\backslash Alph (uppercase letter counter style com.), 401
\alph (lowercase letter counter style com.), 401
\alpha (α Greek char.), 502
alpha (BIBTEX style), 428
alphabets (counter styles), 401
alphabets, math, 196, 195-196
blackboard bold, 181, 197, 390, 512
calligraphic, 185, 197, 301, 390, 512
Euler Fraktur, 180, 182, 197, 301, 302, 390, 512
Euler Script, 301, 302, 390, 512
Greek, 197
symbol, 197-199
alphanumeric keys, 8-9
\amalg (Ш math op.), 506
American Standard Code for Information Interchange, see ASCII
ampersand (\&)
as alignment point
for annotations, 32, 33
for subformulas, $30,31,216,218,221$
as column separator, $25,135,220,221$
text symbol, 77, 81, 518
AMS (American Mathematical Society), xxix, 525, 543
AMSFonts, see AMSFonts
article templates, 294-297
bibliographies
database files, 437
fields, 425
sample files, 437, 437-438
styles, 266, 421, 421, 426, 437-438
distribution, 271, 300-302, 380, 436, 437, 521, 528, 553
document classes, see document classes
environments, see displayed math environments, subsidiary math environments, and text environments front matter, see front matter packages, see packages sample files, see under sample files subject classifications, 279 technical support provided by, 542
top matter, see also under top matter
AMS specific information, 279-281
article information, 273-275
author information, 275-279
commands, 273-285, 296
examples of, 282-285
rules for, 275-279
with multiple authors, 281
Web site, 280, 542
$\backslash \mathrm{AmS}$ ($\mathcal{A}_{\mathcal{M S}}$ logo com.), 80
AMS package distribution, 271, 300-302, 325, 380, 417, 436, 437, 521, 528, 553
$\mathcal{A}_{\mathcal{M S}}$-ETEX, 523, 524
history of, 521-525
version 1.0, 524
version 1.1, 524
two-letter font commands, 94
version 1.2, 524
version 2.0, 524
$\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-\mathrm{TEX}}$, 522, 524
history of, 521-525
amsalpha (BibTEX style), 428
amsart (doc. class), 36, 82, 125, 249-251, 254,
271-302, 465, 469, 525, 529, 536
and numbered lists, 118
front matter of, 285
sample article, 125, 129, 131, 230, 266, 273, 285-293, 294, 371, 376, 383, 392-398, 421, 437, 437-443, 535, 536
top matter of, 251
amsart.tpl (sample file), 294
amsbook (doc. class), xxxii, 253, 376, 465,
466-473, 525, 529
for exercises, 476
amsbsy (pack.), 301, 302, 528
amscd (pack.), 301
AMSFonts, 300, 301-302, 525, 528
document class options for, 300

PostScript versions of, 300, 301, 524, 525, 533
technical support for, 542
updates to, 533
amsfonts (pack.), 301-302, 528
options, 301
amsgen (pack.), 301, 302
amslatex (EATEX distr. directory), 311, 312, 540
amsmath (pack.), xxvi, 53, 231, 300, 301, 302, 403, 524, 525, 528, 533
document class options affecting, 299
options, 299
amsmath. sty (AMS distr. file), 387
amsmidx (pack.), 302
\AMSname (hyperref redef. name), 323
amsopn (pack.), 301, 302
amsplain (BibTEX style), 421, 437, 439, 441
amsplain.bst (BibTEX style file), 421, 421, 426, 437, 439, 446
amsproc (doc. class), 273, 376, 529
amsproc.template (AMS sample template file), 297
amsrefs, 447
creating typeset bibliography, 447
amssymb (pack.), 37, 180, 294, 300, 301, 374, 528
amstext (pack.), 301, 302
amsthm (pack.), 302, 525
amsxtra (pack.), 176, 177, 300, 301
\And (\& math op.), 506
\and, top matter command, 304, 306
and, in bibliographies, 426
\angle (\angle math sym.), 508
annotations
alignment of, 32, 32
alignment point for (\&\&), 32
of formulas, 225
apalike (pack.), 437
apostrophe ('), 11, 62
key, 23, 194
appendices, 255, 467
numbering of, 255, 467
\appendix (struct. com.), 255, 467
\appendixname (redef. name), 376
and hyperref package, 323
\approx (\approx binary rel.), 503
\approxeq (\approx binary rel.), 504
\arabic (numeric counter style com.), 401, 401, 411
\arccos (arccos math op.), 172, 510
\arcsin (arcsin math op.), 172, 510
\arctan (arctan math op.), 172, 510
\arg (arg math op.), 172, 510
arguments
and tokens, 529
empty ($\}$), $39,55,70,159,179,188,189$, 194, 204, 279, 309
errors in, see error messages
long, 73
movable, 74, 475
negative, 102, 162
of commands, see also under specific commands, 327, 335, 349, 350, 355
of commutative diagram symbols, 240
of environments, see also under specific environments
of top matter commands, see also top matter, 272, 273, 279, 281, 284
of user-defined commands, 370-373
multiple, 370, 371
optional, 374
short, 373-374
of user-defined environments
optional, 380, 382, 384
short, 385
optional, 15, 71, 98, 100, 112, 113, 115, $125,162,179,233,242,250$
multiple, 70
of commands, 120, 122, 123, 127, 200, 201, 264, 266, 276-279, 348, 400, 402, 407, 409, 410, 414, 475
of environments, $\mathbf{6 9}, 125,128,132,135$, 229, 243, 260, 384, 486
of sectioning commands, 253,473
of structural commands, 255, 466
of top matter commands, 273-281
use square brackets ([]), 15, 27, 69-70, 123, 132, 135, 285
required, 111, 112, 179, 194, 272, 273, 535
multiple, 19, 70, 137, 192, 194, 268, 311, 379, 404-406
of commands, 19, $\mathbf{6 9}, 137,192,194$, 257, 268, 280, 404, 473, 478, 516
of environments, $\mathbf{6 9}, 135,136,224,226$, 236, 237, 263-264, 266, 309,

383-385, 476

use braces ($\}$), $8,14,19,69,70,530$
short, 73
single character, 69
spacing within, $19,85,107,154,163,181$, 192, 462
specifying zero in, 114
arithmetic
operations, 22-23, 157-159
with counters, 312, 402-403
with length commands, 312, 405
array (subsid. math env.), 208, 210, 229, 232,
236-238, 312, 313, 523, 551, 552
arguments of, 236, 237
array (pack.), 312
arrays, 25-26, 236-238
\arraystretch (table com.), 139
adjusting vertical spacing with, 139
arrow keys, 53
arrows, math, 179, 187, 240, 507
as delimiters, $167, \mathbf{1 6 8}, 509$
ARTICLE (bibl. entry type), 424, 428
article (doc. class), 249, 251, 273, 302, 303, 303-308, 376, 525, 529
anatomy of, 35-43
bibliographies in, 263, 265
sectioning commands provided by, 254
articles
bibliographic entries in, 40-41
bibliographies in, 47-48, 261-267, 423, 436, 437-438, 446
creating templates for, 44-45, 294-297
in BibTEX database files, 428-429, 436
sectioning of, 46, 252-255
top matter information, 44-46
AMS specific, 273-285
AMS subject classifications, 279
author addresses, 44, 277, 281, 296
author names, 46, 276, 296
contributor, 276
current addresses, 277, 281
dedications, 275
e-mail addresses, 278, 281, 296
Internet addresses, 278, 281, 296
keywords, 280, 297
research support, 44, 279, 281, 296, 304
title, 44, 273, 297
ASCII (American Standard Code for Information Interchange), see also plain text, 9
\ast (* math op.), 506
asterisk (* text symbol), 81,518
\asymp (\asymp binary rel.), 503
at sign (@)
in BibTE $_{E} X$ database (bib) files, 424
in \index commands, 455, 456
\author (top matter com.), 37, 54, 249, 304, 306, 331, 469
multiple authors in, 46, 304
optional arguments of, 276, 331
author (BibTEX database field), 424
authors
information about, 46
in AMS top matter, 275-279, 281
multiple, 46
in AMS documents, 281
in bibliographies, 426
in documents, 304
names of
in articles, 46, 276, 296
in running heads, 276
automatic
loading of packages, 53
numbering, $28,30,37,46,119,125,231$, 252
renumbering, 28,536
\autoref (hyperref cross-ref. com.), 320, 320, 322
names supported by, 323
aux (aux. files), 440-443, 474, 487, 526
symbolic references recorded in, 531
auxiliary files, 475, 486, see also aux, bbl, bib, $\mathrm{blg}, \mathrm{bst}, \mathrm{glo}, \mathrm{idx}, \mathrm{ilg}, i n d, \operatorname{lof}$, log, lot, out, and toc, 531

names of, 531
polishing, 486-487

B

\b (_ underscore text accent), 79, 516
b5paper (doc. class opt.), 306
babel (IATEX distr. directory), 311
babel (pack.), 312, 547-548 options, 548
babybeamer1.pdf (sample file), 333-335
babybeamer2.tex (sample file), 334
babybeamer3.tex (sample file), 338
babybeamer4.tex (sample file), 343
babybeamer5.tex (sample file), 341
babybeamer6.tex (sample file), 343
babybeamer6block.tex (sample file), 343
babybeamer7.tex (sample file), 343, 345-347
babybeamer8.tex (sample file), 347
babybeamer9.tex (sample file), 349
babybeamer10.tex (sample file), 359
back matter, 249, 261-268, 467
bibliographies in, 249
index in, 450
numbering of chapters in, 467
\backepsilon (э binary rel.), 504
\backmatter (struct. com.), 467
\backprime (1 math sym.), 508
backref (pack.), 320
backref (opt. of hyperref pack.), 321
\backsim (\sim binary rel.), 504
\backsimeq (\simeq binary rel.), 504
\backslash (\backslash math delimiter), 167, 509
backslash (\backslash text symbol), 81, 518
badness, 530
balancing
braces, 72, 77
errors with, 72-73
in \index commands, 462
inline math delimiters, 153
math delimiters, 168,217
\bar (\bar{x} math accent), 25, 177, 177, 185, 512
bar, vertical (| text symbol), 81, 518
\barwedge ($\bar{\wedge}$ math sym.), 506
base (EATEX distr. directory), 310, 311, 540 packages in, 310
base names (of files), 531
baseline, of text, 95, 108
adjusting with setspace, 99
\baselineskip (length com.), 95, 101
\baselinestretch (length com.), 99
\Bbbk (k math sym.), 508
bbl (proc. bibl. files), 441, 443, 446, 447
beamer (doc. class), see also under presentations, 325-359
abstracts in, 326
color in, 348
commands
\beamergotobutton, 344
\breakhere, 351
\color, 339, 349
\colorbox, 349
\fcolorbox, 349
\frametitle, 327, 328, 344
\hyperlink, 344
\institute, 326
\note, 355
\only, 333-335, 337-339, 343
\onslide, 333, 335, 337-339, 342, 343
\pause, 333, 333, 334, 337
\setbeamercolor, 350
\setbeamertemplate, 355
\tableof contents, 328
\textcolor, 349
\usecolortheme, 357
\usefonttheme, 357
\usetheme, 328, 356
documentation for, 325,358
installation of, 326
options
handout, 358
notes=only, 355
notes=show, 355
trans, 355, 358
xcolor=dvipsnam, 349
preamble in, 326-327
sections in, 328
sidebars, 331
sidebars in, 328
table of contents in, 328
themes, 328, 356-357
top matter in, 326-327
\beamergotobutton (beamer com.), 344
beamerstructure.tex (sample file), 352, 354
\because (\because binary rel.), 504
\begin (start of env.), 67, 68, 72
Berkeley (beamer theme), 328, 331, 332, 356

Berry, Karl, 544, 553, 557
font-naming scheme, 544
\backslash beta (β Greek char.), 502
\beth (\beth Hebrew char.), 501
\between (\oint binary rel.), 504
Bezos, Javier, 178, 523
\bf (obs. LATEX 2.09 font com.), 94, 95
\bfseries (font weight com. dec.), 71, 73, 90, 93, 94, 95, 123, 516
bfseries (font weight env.), 123
bib (BibTEX database files), 421, 423-437, 440
accents in, 427
AMS, 436, 437-438
commas (,) in, 424, 425, 445
comments in, 443
cross-referencing within, 432-433
delimited with parentheses (()), 424
delimiters in, 424
double quote (") in, 424, 445, 446
en dashes (-) in, 427
entries
abbreviations in, 436-437
capitalization in, 427
Jr. in, 426
multiple authors in, 426
von in, 426
entry types, 423-437
case-sensitivity of, 425
start with @, 424
equals signs (=) in, 424
fields in, 425, 431-434, 436
adding your own, 425
case-sensitivity of, 425
optional, 425, 428-436
required, 425, 428-436
rules for typing, 426-437
termination of, 445
used by AMS bibliography styles, 425
location of, 439
number ranges in, 427
numbers in, 424
periods (.) in, 426
portability of, 426
samples of, 423, 437, 446
ties (unbreakable spaces) in, 427
\bibcite (aux. file com.), 443, 531
\bibdata (aux. file com.), 441
\bibitem (bibl. com.), 29, 47, 263
commas in, 266
labels for, 263
optional argument of, 266
spaces in, 266
bibl.tpl (sample file), 47
biblatex (pack.), 447
bibliographies, 29, 36, see also under BibTEX, 47-48, 261-267
AMS support for, 436, 437-438
appear in back matter, 249
citing references from, 29, 47, 264, 439, 441
as hyperlinks in PDF files, 321
with BibTEX, 439
commands for, 437, 439
conventions, for labels, 48
defining, 29, 40-41, 48, 66, 261-267, 375, 407, 423-437, 442
document class options affecting, 308, 308
entries made in auxiliary files for, 441 , 443, 531
examples of, 40-41, 43, 47, 261-263, 421-423
in articles, see also bibliographies, sample files for, 40-41, 423, 436, 446
multiple, in a document, 267
numbering of, 48, 264
portability of, 426, 428
processed files, see bbl
sample files for, 423, 437, 437-438, 446
styles, 421, 422, 437
AMS, 266, 421, 426, 437, 439
templates, 261
with amsrefs, 447
\bibliography (bibl. com.), 69, 437, 439
\bibliographystyle (bibl. com.), 437, 439
\bibname (redef. name), 267, 376
\bibstyle (aux. file com.), 441
BibTEX, 421-447
AMS support for, 436
citing references with, 439
commands, 436, 439
in auxiliary files, 441
database files, see bib
log files, see blg
processed bibliography files, see bbl
running, 437-446
sample files for, 423, 437, 437-438
style files, see bst
styles, 421, 422, 426, 437, 439
BibTEX 1.0 (Patashnik), 559
BIBTEXing (Patashnik), 446
\backslash Big (math delim. size com.), 168
\big (math delim. size com.), 168
\backslash bigcap (\bigcap large math op.), 175, 511
\bigcirc (\bigcirc math op.), 506
\backslash bigcup (\bigcup large math op.), 175, 511
\backslash Bigg (math delim. size com.), 168
\bigg (math delim. size com.), 168
\backslash Biggl (math delim. size com.), 169
\biggl (math delim. size com.), 169, 184
\biggm (math delim., as binary rel. size com.), 170
\backslash Biggr (math delim. size com.), 169
\biggr (math delim. size com.), 169, 184
\backslash Bigl (math delim. size com.), 169
\bigl (math delim. size com.), 169
\bigm (math delim., as binary rel. size com.), 170
\bigodot (\odot large math op.), 175, 511
\bigoplus (\bigoplus large math op.), 175, 511
\bigotimes (\bigotimes large math op.), 175, 511
\backslash Bigr (math delim. size com.), 169
\bigr (math delim. size com.), 169
\bigskip (spacing com.), 104
\bigsqcup (\bigsqcup large math op.), 175, 511
\bigstar (\star math sym.), 508
\bigtriangledown (∇ math op.), 506
\bigtriangleup (\triangle math op.), 506
\biguplus (\biguplus large math op.), 175, 511
\bigvee (\bigvee large math op.), 175, 511
\bigwedge (\bigwedge large math op.), 175, 511
binary operations, $188,195,506$
 + and - rule, 191, 213, 216
adding white space around, 155
and alignment of displayed formulas, 218
and breaking displayed formulas, 213, 216, 217
created with \overset, 193
created with \underset, 183
defining, 195
and subformulas, 216
for congruences, 173
binary relations, 170, 181, 188, 189, 191, 503, 504
adding white space around, 155
and alignment of displayed formulas, 218
and breaking displayed formulas, 217
created with \overset, 183, 193
defining, 195
delimiters as, 170
math delimiters as, 170
negated, 181, 194, 505
\binom (math com.), 23, 159
binomial coefficients, 23, 159-160
in inline and displayed math environments, 160
bitmap fonts, 543
Black, Alison, 553, 557
blackboard bold (math alphabet), 181, 197, 390
\blacklozenge (math sym.), 508
\blacksquare (\quad math sym.), 508
\blacktriangle ($\mathbf{\Delta}$ math sym.), 508
\blacktriangledown ($\mathbf{\nabla}$ math sym.), 508
\blacktriangleleft (\langle binary rel.), 504
\blacktriangleright (binary rel.), 504
blank
lines
in displayed math environments, 51 , 153, 157, 215
in inline math environments, 153
in text environments, 118
in top matter commands, 273
in verbatim environments, 146
terminating paragraphs with, $11,64,99$, 118, 144
math delimiters, 168, 182
math symbol for commutative diagrams (@), 240
blg (BibTEX log files), 441, 442
block (beamer env.), 343
block comment, see comments
Blue Sky Research, 525, 543
blue spaces, see also tie, unbreakable spaces, nonbreakable spaces, 76
bm (pack.), 312
Bmatrix (subsid. math env.), 235
bmatrix (subsid. math env.), 235
\backslash bmod (mod math op.), 173, 174, 506
body
of books, 467
of documents, $11,36,37,41,68,164$, 248-268
of environments, 68
of page, 268
of presentations, 327
of theorem environment, 46
bold
font weight, $14,89,90, \mathbf{9 3}, 94,95, \mathbf{1 2 3}$, 163, 184, 196, 196, 197, 301, 390, 516
math symbols, 197-199, 301, 312
\boldsymbol (math font weight com.), 184, 197, 198, 301, 512
BOOK (bibl. entry type), 424, 429-430
book (doc. class), xxxii, 253, 376, 465, 466-473, 474, 524, 525, 529
BOOKLET (bibl. entry type), 424, 435
bookmarks=true (opt. of hyperref pack.), 320
bookmarks, in PDF documents, 321
books
bodies of, 467
document classes for, 253, 465, 466-473, $474,476,524,525,529$
options of, 468
final preparation of, 482-487
in BibTEX database files, 429-430
logical design of, 479-481
numbering of structures in, 466
sectioning of, 466-467, 479
books (continued)
structure of, 467
top matter of, 251
writing with ETEX, 465-487
booktabs (pack.), 140
booktitle (BibTEX database field), 425, 433
\bot (\perp math sym.), 508
bottoms, of text boxes, 405
\bowtie (\bowtie binary rel.), 503
\backslash Box (\square math sym.), 508
\boxdot (\square math op.), 506
boxes, 107-115
and length commands, 405
around formulas, 205-206
commands for measuring, 406
invisible, see struts
multiline, 107
paragraph, 110-112
solid, 113-114, see also struts
text, 107-115
alignment of contents in, 107, 111
behave as single characters, 107
commands for, xxvi, 27, 33, 83, 99, 107,
$107-115,138,140,154,162-163$, 181, 206, 241, 301
environments for, 107, 109, 112, 383, 384
fine tuning placement of, 115
framed, 109-110
measurements of, 405
single line, 107-109, 163
vertical alignment of, 111, 115
vertical alignment of, 111
\boxminus (\boxminus math op.), 506
\boxplus (\boxplus math op.), 506
\boxtimes (\boxtimes math op.), 506
Braams, Johannes, xxxiii, 523, 547, 557, 559
braces
must be balanced, $72,77,87,166,462$
special, $18,49,72,73,152,153,157$
cannot overlap, 72-73
environments act as, 72
stretchable horizontal, 178-179
braces, curly ($\}$), 8, 14, 19, 23, 69-71, 158, 159, 180, 181, 188-190, 204, 216, 217, 279, 285, 366, 379
and command declarations, 367
as math delimiters, 167, 509
define scope, 71-73
in BibTEX entries, 424, 426, 427, 436
in \index commands, 462
in text ($\}$), 77, 81, 518, 530
unbalanced, 21, 77
with \def, 378
brackets, square ([]), 8,62 as math delimiters, 24, 167, 509
breaking formula lines within, 217 enclose optional arguments, 15, 27, 69-70, 123, 132, 135, 166, 331
with \newcommand, 370
\breakhere (beamer com.), 351
breaking
formulas, see under formulas
lines, see under lines
pages, see under pages
paragraphs, see under paragraphs
breve (${ }^{\text {t text accent }), ~ 79, ~} 516$
\breve (\breve{x} math accent), 177, 512
Bringhurst, Robert, 67, 553, 557
browsers, see under Internet
bst (BibTEX style files), 421, 421, 422, 426, 437, 439
determine use of fields, 425
form of citations created by, 428
location of, 439
\bullet (• math op.), 506
bullet (\bullet text sym.), 81, 518
bulleted lists, 119
\backslash Bumpeq (\approx binary rel.), 504
\bumpeq (\bumpeq binary rel.), 504
Butcher, Judith, 553, 557
\bysame (bibl. com.), 266, 375, 391, 442, 443

C

\c (ç cedilla text accent), 79, 516
(C) (copyright text sym.), 81, 518
calc (pack.), 312, 403, 406
calligraphic (math alphabet), 185, 197, 301, 390, 512
\Cap (ก math op.), 506
\cap (\cap math op.), 506
capitalization, in bibliographic databases, 266
\caption, 39, 52
in figures, 259
in tables, 259
optional argument of, 476
captions, 134, 476
in figures, 259
in lists, 120, 476
in tables, 259
multiple, 259
caret (${ }^{\wedge}$), 77
Carlisle, David, xxxiii, 123, 136, 257, 259, 320, 368, 523, 559
caron (~ text accent), 79, 516
case-sensitivity
of BibTEX fields and entry types, 425
of command names, 14,69
of environment names, 69
of \label arguments, 257
of sort keys in \index commands, 462
cases (subsid. math env.), 33, 208, 210, 239
page breaks in, 242
\ccname (redef. name), 376
CD (subsid. math env.), 240-242
\cdot (•math op.), 23, 158, 506
\cdots (centered ellipsis), 160, 186
cedilla (ç text accent), 79, 516
ceiling math delimiters, 167,509
center (text align. env.), 8, 106, 124, 134, 227, 407
breaking lines in, 124
LATEX definition of, 414
\centerdot (. math op.), 506
centered ellipses, 24, 160
 (alignment com. declaration), 54, 124, 227, 327
centering text, $8,14,124$
in columns in tabular environments, 135
in presentations, 54, 327
in tables, 134, 137
centertags (doc. class opt.), 298
centimeter (cm abs. unit), 12, 15, 105, 107, 111, 403
\cfrac (math com.), 200
\chapter (struct. com.), 253, 255, 304, 466
arguments of, 466
numbering of
equations in, 466
in front and back matter, 467
chapter (counter), 399, 399
chapter (BibTEX database field), 425
\chaptername (redef. name), 376
and hyperref package, 323
chapters
document class options to set start pages for, 468
grouping into parts, 466
in BIBTEX database files, 436
in books, 466
numbering of, in front and back matter, 467
characters, see also glyphs
accented, 9, 15, 62, 69, 79-80, 82,
176-178, 183, 322, 416, 427
European, 15, 79-80, 515-516
following verbatim environments, 146
Greek, 181, 389-390, 502
Hebrew, 501
invalid, 9, 63
line ending, see line ending characters
math, 17, 63
special, 9, 63, 76-78
accessing with \symbol, 77, 311
in \index commands, 457
treating text boxes as, 107
\backslash check (\check{x} math accent), 177, 512
checkers, spelling, 48,495
Chen, Pehong, 449, 463, 557
\chi (χ Greek char.), 502
\circ (o math op.), 506
\circeq (으 binary rel.), 504
\circlearrowleft (\circlearrowleft math arrow), 507
\circlearrowright (仓 math arrow), 507
\circledast (\circledast math op.), 506
\circledcirc (© math op.), 506
\circleddash (Θ math op.), 506
\circledS (S math sym.), 508
circumflex (${ }^{\wedge}$)
text accent, 79, 516
text symbol, 81,518
\citation (aux. file com.), 441
citations, bibliographic, 29, 47, 255, 263, 439, 441
created by BibTEX styles, 428, 439
hyperlinks in PDF files, 321
showing in margins, 257
\cite (bibliographic com.), 29, 47, 255, 263, 441
multiple citations, 264
optional argument of, 264
showing contents, in margin, 313
showing labels in margins, 257
spaces in, 264
with BibTEX, 439
classes, document, see document classes
classification of math symbols, 188-189, 195
\cleardoublepage (page breaking com.), 101
cleardoublepage.sty (sample file), 101

 (page breaking com.), 101, 261

clients
e-mail, 65
FTP, 538
\cline (table com.), 137, 137-138, 138
cls (doc. class files), 250, 375, 410
\clubsuit ($\boldsymbol{\$}$ math sym.), 508
CM (Computer Modern) fonts, see Computer Modern fonts
cm (centimeter abs. unit), 12, 15, 105, 107, 111, 403
cmr10.tfm ($\mathrm{T}_{\mathrm{E}} \mathrm{X}$ font metric file), 529
coefficients, binomial, see binomial coefficients
collections, in BibTEX database files, 431-432
\colon (: math com.), 63, 191
colophons, of books, 467
\color (beamer com.), 339, 349
color, in presentations, 348-350
\colorbox (beamer com.), 349
colorlinks (opt. of hyperref pack.), 320, 321
column (beamer env.), 348
columns

double

document class options for, 299, 307
figures spanning, 259
footnotes in, 313
tables spanning, 259
in presentations, 347-348
math
adjusted, 231-242
adjusting with flalign environment, 221
in aligned formulas, 219-231
specifying in matrix subsidiary environments, 233
multiple, 101, 313, 523
separator (\&), 25, 135, 220, 221
width of, in tabular environments, 136
columns (beamer env.), 348
combining
document class options, 308
encapsulators in \index commands, 455
command declarations, 73, 90, 124, 137, 227
affecting multiple paragraphs, 90
do not take arguments, 73
for fonts, see font command declarations
scope of, 90, 367-368, 382
using in user-defined commands, 90 , 367-368
command files, see also sty files and packages, 250, 366, 386-392
commands in, 386
terminating, 392
commands, 67-74
*-ed form, 46, 69, 98, 101, 103, 105, 129, $130,148,173,195,196,242,253$, 322, 373, 382, 385, 439, 467, 473
arguments of, see under arguments or specific commands, 327
as tokens, 529
defining, see user-defined commands delimited, see delimited commands for boxes, see under boxes
for dates and times, see time commands
for expanding values, 80, 87, 113, 400
for figures, see under figures or floats
for filling horizontal space, 106, 113, 126, 186, 233, 235, 414
for floats, see under floats
for fonts, see font commands
for graphics, see under graphics
for indexing, see under indexing
for presentations, see under presentations, beamer, and FoilTEX
for tables, see under tables or floats
fragile, 74
protecting, 74, 252, 253, 466, 475
generalized, see user-defined commands
global, see under scope
in preamble, see under preamble
length, see length commands
local, see under scope
logical design using, 52-53
long, 73
math, see math commands
names of, 68
case-sensitivity of, 14, 69
primitive, see primitive commands
providing, 375
redefining, 374-375
scope of, see under scope
sectioning, see structural commands
short, 73, 90, 273, 284
defining, 373-374
spacing, see spacing commands
start with $\backslash, 8,14,68$
structural, see structural commands
terminating, 19, 69, 154
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$, see under $\mathrm{T}_{\mathrm{E}} \mathrm{X}$
text style, see text style commands
to avoid using, 94, 481
top matter, see under top matter types of, 73-74
user-defined, see user-defined commands
commas (,), 9,62
and italic correction, 92
in \bibitem commands, 266
in BibTEX databases, 424, 425, 445
use in formulas, 155
comment (comment env.), 86-87, 313, 387, 523
locating errors with, 87
nesting, 86
comments, 10, 85-87
block comment, 6, 50, 51, 86, 478, 494, 498
keyboard equivalents, 499
block uncomment, 6, 494, 498
creating with $\%$ characters, $6,21,85,86$, 141, 294
creating with comment environments, 86-87
finding errors using, $6,19,86,366,387$
in BibTEX database files, 86, 443
inserted using kill command, 141
marginal, 112-113, 484
in double-sided documents, 112
in equations, 112
in multiline math environments, 112
space between, 404
width of paragraph box for, 113
removing end-of-line characters with, 84 , 85, 458
commutative diagrams, 240-242, 301
comp.text.tex (newsgroup), 542
\complement (C math sym.), 508
components
building formulas from, 164-166
of formulas, 22-27, 157-166
of pages, 268
Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network, see CTAN
computer, see Mac, PC, and UNIX
Computer Modern (CM) fonts, $89,89,93,544$, 545
bold extended, 89
ligatures in, 79
math bold italic, 196
math italic, 196
PostScript versions of, 523, 525, 543
roman, 89, 196, 529
sans serif, 89
typewriter, $78,78,89$
conference proceedings, in $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database files, 424, 430-432
\cong (\cong binary rel.), 503
congruences, 24, 173
as binary operations, 173
consecutive numbering, of proclamations, 127-128
contents, table of, see under tables
\contentsline (toc file com.), 473
\contentsname (redef. name), 376
context, affects style of emphasized text, 91 continued fractions, 200
\contrib (top matter com.), 276
contrib (EATEX distr. directory), 540
controls, float, 134, 260-261
conventions for labels
in bibliographies, 48
of equations, 28
of sections, 46
converting
files
from DVI to PostScript, 318
from PostScript to PDF, 319
from articles to presentations, 53, 326
\coprod (【 large math op.), 175, 511
\copyright (© copyright), 81, 518
corner math delimiters ($\llcorner\lrcorner,,\ulcorner\urcorner,), 167,509$
corollaries, see proclamations
correction, italic, see italic correction
\cos (cos math op.), 172, 510
\cosh (cosh math op.), 172, 510
\cot (cot math op.), 172, 510
\coth (coth math op.), 172, 510
counters, 123, 233, 377, 399-403
and \include commands, 400
and \label commands, 402
and proclamations, 399
arithmetic with, 312, 402-403
defined in preamble, 400
defining, 400
incrementing, 402
LATEX, 399
linking with other counters, 400, 401
names of, 128
store numbers, 399
styles for, 87, 123, 382, 401, 400-401, 411
values of, 87,400
printing, 80, 113, 400
setting, 399-400, 402
with list environments, 411
Courier, in LATEX documents, 544
cross-referencing, 47-48, 255-258, 267, 322
among multiple documents, 313
and automatic renumbering, 28, 536
entries made in auxiliary files for, 443,531
in indexes, 457
in proof environment titles, 132
inside presentations, 328
labels for, 28, 31, 46, 50-51, 202, 215, 231, 252, 255, 259, 267, 402
of equations, 28, 27-29, 31, 156, 202, 203, 219, 256
groups of, 218-219
in multiline math environments, 215
of list items, 119, 123
of tables, 134
page numbers, $28,31,202,258,267,484$, 531
with varioref package, 313
section numbers, $28,31,46,123,132,134$, 156, 202, 215, 252, 255, 301, 531
using ties (${ }^{\sim}$) with, 28, 66, 257
within BibTEX databases, 432-433
crossref (BibTEX database field), 425
\csc (csc math op.), 172, 510
ctan (Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network), 310, 537, 538-540, 542, 544, 546, 553
catalogue, 539
LATEX distribution on, 539
mirrors of, 540
packages on, 464, 540
\URLs for, 538
\Cup (ש math op.), 506
\cup (\cup math op.), 506
\curlyeqprec (そ binary rel.), 504
\curlyeqsucc (\succ binary rel.), 504
\curlyvee (\curlyvee math op.), 506
\curlywedge ($ᄉ$ math op.), 506
\curraddr (top matter com.), 278 rules for using, 277
\curvearrowleft (\curvearrowleft math arrow), 507
\curvearrowright (\curvearrowright math arrow), 507 customizing
article templates, 44-45
for AMS document classes, 294-297
preambles of, 44, 294
top matter of, 44, 294
indentation of text, 103
LATEX, 363-417
dangers of, 415-417
lists
and counters, 411
defining new, 406-415
theorem styles, 131
cyrillic (IAT $\mathrm{E}_{\mathrm{E}} \mathrm{X}$ distr. directory), 311
cyrillic (pack.), 312

D

\d (. underdot text accent), 79, 516
\backslash dag (\dagger dagger)
math symbol, 508
text symbol, 81, 518
\dagger (\dagger math op.), 506
\daleth (THebrew char.), 501
Dante (German $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user group), 541
dashes, 62
em dash (-), 14, 75, 81,518
en dash (-), 14, 75, 81,518
in BIBTEX databases, 427
\dashleftarrow ($\leftarrow-$ math arrow), 507
\dashrightarrow (--> math arrow), 507
\dashv (\dashv binary rel.), 503
databases, BIBTEX, see also bib, 421, 423-437, 440
\date (top matter com.), 37, 44, 80, 87, 249, 275, 304, 469
with letter document class, 309
\datename (redef. name), 376
dates
commands for, see also \date and time commands, 14, 37, 44, 70, 80, 275, 548
LATEX release, 86, 251, 532
of packages, 533
\day (time com.), 80
\dbinom (display-style binomial com.), 160
dcolumn (pack.), 136, 313
\ddag (\ddagger dagger)
math symbol, 508
text symbol, 81,518
\ddagger (\ddagger math op.), 506
\ddddot (\dddot{x} math accent), 177, 512
\dddot (\dddot{x} math accent), 177,512
\ddot (\ddot{x} math accent), 177, 512
\ddots (\because diagonal ellipsis), 161, 235
decimals, alignment on, 136, 313
declarations, command, see command declarations
\DeclareMathOperator (op. def. com.), 173, 195, 196, 198, 250, 301
\DeclareMathOperator* (op. with limits def. com.), 173, 195
declaring, types of math symbols, 195
\dedicatory (top matter com.), 275
\def ($\mathrm{T}_{\mathrm{E}} \mathrm{X}$ com.), 416
defining commands with, 378
overwriting previously defined commands with, 378
definition (procl. style), 129, 129-131
definitions, see proclamations
\backslash deg (deg math op.), 172, 510
delarray (pack.), 313
delimited commands, 378-380
invoking, 378
delimiters
for displayed math environments, 18
for inline math environments, 18,74 , 152-153
for \verb commands, 147
in BIBTE $_{\mathrm{E}} \mathrm{X}$ database files, 424
math, see math delimiters
\backslash Delta (Δ Greek char.), 502
\delta (δ Greek char.), 502
depth
of tables of contents, 403
of text boxes, 108, 111, 405, 405
\depth (length com.), 108, 108, 111
description (text list env.), 118, 120-121
design
logical, 52-53
of books, 479-481
of document classes, 522
visual, 52-53, 268-270, 358
\det (det math op.), 172, 510
device independent files, see DVI files
$\backslash \operatorname{dfrac}\left(\frac{x}{y}\right), 158,186,200$
\DH (Eth Eur. char.), 519
\dh (eth Eur. char.), 519
\diagdown (\backslash math sym.), 508
diagonal ellipses, 235
diagrams, commutative, see commutative diagrams
\diagup (/ math sym.), 508
\backslash Diamond (\diamond math sym.), 508
\diamond (\diamond math op.), 506
\backslash diamondsuit (\diamond math sym.), 508
dieresis, see umlaut
diesis (\ddagger)
math symbol, 506, 508
text symbol, 81,518
\digamma (F Greek char.), 502
\dim (dim math op.), 172, 510
dimensions, see also measurements
units for measuring, $12,15,89,93,95,96$, $105,107,111,190,308,403,513$
with length commands, 404
directories, see under AMS and LATEX distributions
\displaybreak (display break com.), 242, 243
optional argument of, 243
displayed formulas, see displayed math environments
displayed fractions, see under fractions
displayed math environments, 17, 25, 27-33, 152

$$
(start math mode), 18, 152
Visual Guide to, 207, 208
$$ (end math mode), 18, $\mathbf{1 5 2}$

act as special braces, 152
align, 30-31, 33, 208, 210, 219-224, 230, 242
align*, 31, 221, 226
alignat, 208, 210, 224-226
blank lines in, 51
breaking pages in, 242-243
displaymath, 152, 153, 156, 157, 231
eqnarray, 222
equation, 27, 33, 156-157, 201, 231, 328
equation*, 157, 157, 201, 231, 328
flalign, 208, 210, 221
font size in, 199
gather, 208, 210, 211-212, 219, 242
gather*, 211
in direct succession, 482
inline-style binomials in, 160
multline, 208, 210, 212-214
multline*, 213-214
subequations, 203, 204, 219, 401
displayed text environments, 117, 143-147
alltt, 159, 311
blank lines in, 118
multicols, 101, 523
proof, 39
quotation, 144
quote, 143
tabbing, 141-143, 551, 552
tabular, 78, 133-140, 237, 259, 312, 313, 523, 551, 552
theorem, 37, 46, 52, 125, 128, 343, 384
verbatim, 145-147, 148, 313
verse, 144-145
xcb, 476
displaymath (disp. math env.), 152, 153, 156, 157, 231
\displaystyle (math font size com.), 199, 204
dissertations, in BibTEX database files, 433-434 distributions

AMS packages, 271, 300-302, 325, 380, 417, 436, 437, 521, 528, 553
LATEX, 78, 86, 257, 303-308, 310-313, 489, 525, 528, 529, 532, 534, 539, 540, 547, 553
PSNFSS, 544-545
TEX, 528
\div (\div math op.), 158, 506
\divideontimes (* math op.), 506
division, 22, 63, 158, 191, 506
\DJ (Dyet Eur. char.), 519
\dj (dyet Eur. char.), 519
doc (EATEX distr. directory), 311
document (text env.), 11, 37, 41, 68, 164, 248
document class options
9pt, 297
10pt, 104, 297, 306
$11 \mathrm{pt}, 297,306$
12pt, 93, 297, 306
a4paper, 298, 306
a5paper, 306
are passed on to packages, 250
b5paper, 306
centertags, 298
combining, 308
draft, 13, 96, 249, 300, 306
executivepaper, 306
final, 300, 306
fleqn, 298, 307
for AMSFonts, 300
for bibliographies, 308, 308
for double-column documents, 299, 307
for double-sided printing, 299, 307, 468
for font sizes, 297, 306
for page orientation, 307
for position of equation numbers, 298, 307
for start of chapters, 468
for title pages, 299, 307, 468
handout, 358
landscape, 307
legalpaper, 85, 298, 306
leqno, 298, 307
letterpaper, 298, 306
noamsfonts, 300
nomath, $\mathbf{3 0 0}$
notitlepage, 299, 307, 468
onecolumn, 299, 307
oneside, 299, 307, 468
document class options (continued)
openany, 468
openbib, 308, 308
openright, 468
psamsfonts, 300
reqno, 298, 307
tbtags, 298
titlepage, 249, 299, 307, 468
trans, 358
twocolumn, 85, 101, 259, 299, 307, 308, 313
twoside, 85, 249, 299, 307, 308, 468
document classes, $53,82,125,376,528,529$
amsart, 36, 82, 118, 125, 249-251, 254, 271-302, 465, 469, 525, 529, 536
amsbook, xxxii, 253, 465, 468, 469, 476, 525, 529
amsproc, 273, 529
anatomy of, 35-43
article, 35-43, 249, 251, 254, 263, 265, 273, 302, 303, 303-308, 525, 529
beamer, 325-359
book, xxxii, $253,465,469,474,524,525$, 529
changing, 536
cls files, $250,375,410$
design of, 522
determine
placement of equation numbers, 298, 307
position of equations, 298, 307
spacing, 102
foils, 53
for books, 253, 465, 466-473, 474, 476, 524, 525, 529
options of, 468
for presentations, see under FoilTEX and beamer
legacy, $54,118,249,254,263,273,302$, 305, 303-313, 529
letter, 308-310, 529
options of, see document class options
proc, 529
proc-1, 272
report, 253, 303, 303-308, 529
sample, 10
sample.cls, 11
slides, 303, 529
document font families, $8,14,90, \mathbf{8 9 - 9 0}, 93$, 123, 163, 301, 390, 412, 516, 544
normal, 90
roman, $\mathbf{8 9}, 544$
sans serif, 89, 544
typewriter style, 89, 544
document parameters, for page design, 552
documentation
for AMS document classes and packages, 552
for beamer document class, 325,358
for $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}, 311,552$
packages, 312
for New Font Selection Scheme (NFSS), 553
\documentclass (preamble com.), 4, 13, 35, 36, 53, 70, 85, 180, 249, 294, 326, 355
and \backslash NeedsTeXFormat command, 250
documents
body of, 11, 36, 37, 41, 68, 164, 248-268
cross-referencing among multiple, 313
design of, 268-270
LATEX, 247-270
on the Internet, 317-323
using AMS document classes in, 271
legacy, 319
master, 477-479
preamble of, 249-251
printing and viewing, 5, 318, 530
readability of, 93,358
splitting into multiple files, 476-479
dollar sign (\$), see also $\$$ and $\backslash \$, 9$ as inline math delimiter, $17,18,33,74$, 152, 152, 518
as text symbol, 77,81
Doob, Michael, 110, 528, 557
\dot (\dot{x} math accent), 177, 512
\doteq (\doteq binary rel.), 503, 504
 (space fill com.), 106
dotless i and j (1 and j), 79, 79, 516
\dotplus ($\dot{+}$ math op.), 506
\dots (... math ellipsis com.), 24, 78, 160-161, 186
dots, filling lines with, 106
\dotsb (... math com.), 161
\dotsc (... math com.), 161
\dotsi (... math com.), 161
\dotsm (... math com.), 161
\dotso (... math com.), 161
double accents, in math, 177
double acute (" text accent), 79, 516
double dagger (\ddagger)
math symbol, 506, 508
text symbol, 81,518
double guillemet, 519
double quote ("), 9 , see also quotation marks, 75, 81, 518
in \index commands, 457
in BibTE $_{E} X$ database fields, 424, 445, 446 key, $9,63,75$
double spacing, 99
double subscripts and superscripts, font size of, 199
double vertical lines in CD environments, 241
double-column
documents
and footnotes, 313
document class options for, 85, 299, 307
figures and tables, 259
double-sided printing
and marginal comments, 112
document class options for, 85, 299, 307, 468
\doublebarwedge ($\bar{\wedge}$ math op.), 506
\doublecap (\cap math op.), 506
\doublecup (ש math op.), 506
\doublespacing (setspace com.), 99
\Downarrow (\downarrow)
math arrow, 507, 509
math delimiter, 167
\downarrow (\downarrow)
math arrow, 507
math delimiter, 167, 509
\downdownarrows ($\downarrow \downarrow$ math arrow), 507
Downes, Michael, 447, 523, 524
\downharpoonleft (\downarrow math arrow), 507
\downharpoonright (\mid math arrow), 507
draft (doc. class opt.), 13, 96, 249, 300, 306
drivers
printer, 312, 320, 526, 530, 539
video (DVI viewer), 526, 530
Duchier, Denys, 523
Dupré, Lyn, 85, 553, 557
DVI files, 526, 530, 539
converting to PostScript, 318
printing, 530
viewing, 526, 530
dvipdf (opt. of hyperref pack.), 320
dvipdfm (opt. of hyperref pack.), 320
dvipdfmx (opt. of hyperref pack.), 320
dvips (opt. of hyperref pack.), 320
dvipsnam (opt. of xcolor pack.), 349
dvipsone (opt. of hyperref pack.), 320
dviwindo (opt. of hyperref pack.), 320
dyet (Eur. char), 519

E

e-mail, see \email
e-mail clients, 65
editing cycle, 4-6
Mac, 498
PC, 491
edition (BIBTEX database field), 425
editor (BibTEX database field), 425
editors, text, xxvi, 4, 5, 9, 18, 48, 55, 63, 84, 88, 365, 490, 526

Eijkhout, Victor, 553, 557
electronic mail address, see \email
\ell (ℓ math sym.), 508
ellipses (...)
centered (\cdots), 24, 160
diagonal, 235
in math, 24, 160-161, 233
in text, 78
vertical, 235
\em (font shape com. dec.), 90, 91, 92, 123, 367, 382, 516
em (font shape env.), 123
em (rel. unit), 403, 513
em dash (-), 14, 75, 81, 83, 518
EM fonts, see European Modern fonts
\email (top matter com.), 278, 281-283, 295, 296
rules for using, 278
\emph (font shape com.), $8,14,68,90,91,337$, 516
emphasized (font shape), $8,14,28,68,90,91$, 92, 123, 125, 156, 367, 382, 516
and italic correction, 92
context dependence of, 91
empty (page style), 268
empty group ($\}$), 39, 55, 70, 159, 179, 188, 189, 194, 204, 279, 309
\emptyset (\emptyset math sym.), 508
en dash (-), 14, 81, 83, 518
in BibTEX databases, 427
Encapsulated PostScript (EPS), see EPS
\enclname (redef. name), 376
encodings, font, see font encodings
\end (end of env.), 67, 68, 72
errors with, $72,146,478$
end-of-line characters, see line ending characters
\endinput (input ending com.), 392, 478
eng (Eur. char), 519
\enlargethispage (spacing com.), 101, 484, 487
\enlargethispage* (spacing com.), 101
\ensuremath (math mode com.), 369, 370, 375
Enter key, see Return key
entries
bibliographic, see under bib
glossary, see under glossaries
index, see under indexing
enumerate (list text env.), 313, 382
enumerate (pack.), 123, 313, 382, 387
enumi (counter), 123, 399
enumii (counter), 399
enumiii (counter), 399
enumiv (counter), 399
environments, $8,14,18,67-74$
*-ed forms, 157, 201, 211, 213, 215, 231, 259
act as braces, 72
arguments of, see under arguments or specific environments
$\ \backslash$ in, 124, 145
begin with \begin, 68, 72
body of, 68
case-sensitivity of names of, 69
end with \end, 68, 72
font size, 123
for presentations, see under beamer and FoilTEX
for proclamations, see proclamations for tables, see tables
indenting contents of, in source file, 155
legacy, 123, 143-145, 407
list, see list text environments
logical design using, 535
typesetting environment names, 535
math, see under inline and displayed math environments, subsidiary math environments, and displayed text environments
modifying, 380-383
\newline in, 98
operating, see under PC, Mac, and UNIX
short, 385
subsidiary math, see subsidiary math environments
text, see displayed text environments, list text environments, and text environments
user-defined, see user-defined environments, see user-defined environments
visual design using typesetting environment names, 535
EPS (Encapsulated PostScript)
files, 476, 483, 496
format, 39, 259, 483, 552
\epsilon (ϵ Greek char.), 502
\eqcirc (프 binary rel.), 504
eqnarray (math align. env.), 222
\eqref (cross-ref. com.), 28, 29, 31, 156, 202, 203, 215, 219, 255, 256, 263, 328, 370
\eqslantgtr ($>$ binary rel.), 504
\eqslantless ($<$ binary rel.), 504
equals (=)
binary relation, 63, 503
in BIBTEX $_{E}$ database fields, 424
key, 8
equation (counter), 399, 399
equation (disp. math env.), 27, 33, 156-157, 201, 231, 328
blank lines in, 157
equation* (disp. math env.), 157, 157, 201, 231, 328
\equationname (hyperref redef. name), 323 equations, 27-29
document class options for placement of numbers, 298, 307
grouping, 203-204
in multiline math environments, 215
in presentations, 328
labels for, 28, 256
marginal comments in, 112
numbering of, 27-29, 55, 156-157, 201, 211, 213, 215
groups, 218-219
in chapters of books, 466
preventing, $30,31,157,201,211,213$, 215, 218, 231
variants, 203, 218
within sections, 156, 250
position of, 298, 307
systems of, 225-226
tagging, 29, 201-204, 211, 213, 215, 218, 230, 231
\equiv (三)
binary relation, 503
math operator, $24,174,182,371,379$
error messages, 5 , see also warning messages, 48-52, 534
Argument of $\backslash x x x$ has an extra \}, 146
Bad math environment delimiter, 132, 153, 475
\begin\{document\} ended by } \end\{x } \{ x x \} , 8 7 , 1 4 6
\begin\{split\} not allowed here, } 231
\backslash begin $\{x x x\}$ on input line $x x$ ended by \end\{yyy\}, 49, 50, } 7 2
Can be used only in preamble, 250
Command \xxx already defined, 367, 376, 381
Display math should end with $\$ \$$, 51
Double superscript, 158
Environment $x x x$ undefined, 381
Extra alignment tag has been changed to \cr, 237
Extra \}, or forgotten $\backslash x x x, 73$, 223
File ' $x x x$ ' not found, 534
I was expecting a ',' or a ')', 445, 446

Illegal character in array arg, 237
Illegal unit of measure (pt inserted), 114
Incomplete \iffalse; all text was ignored after line $x x$, 309
Invalid use of $\backslash x x x, 162$
line numbers in, $6,9,153,154$
Misplaced \xxx, 135, 227, 233
Missing \begin\{document\}, } 1 2 6
Missing control sequence inserted, 404
Missing \$ inserted, 20, 51, 147, 153, 154, 157, 233
Missing number, treated as zero, 98, 111
Missing \right. inserted, 217
Missing \} inserted, 21, 49, 223
No counter ' $x x x$ ' defined, 400
Paragraph ended before $\backslash x x x$ was complete, 49, 50, 114, 126, 237, 373, 379, 462
recorded in log file, 526
Runaway argument?, 49, 126, 237, 284, 379, 462
showing paragraph breaks in, 99
Something's wrong--perhaps a missing - , 120, 263
\tag won't work here, 215
Text line contains an invalid character, 9, 52, 64
Too many \}'s, 21, 72, 285
Undefined control sequence, 44, 50, 71, 282, 284, 367
Underfull \hbox, 97, 530
Use of \(\backslash x x x\) doesn't match its definition, 379
\verb command ended by end of line, 148
with BIBTEX \(_{\mathrm{E}} \mathrm{X}, 443-446\)
in \(\log (\mathrm{blg})\) files, 442
You're missing a field name, 444
eszett (\(\beta, \mathrm{SS}\)), 81, 515, 548
\eta (\(\eta\) Greek char.), 502
\eth (ð math sym.), 508
eth (Eur. char), 519
eucal (pack.), 301, 302, 386, 512
options, 301, 390, 512
eufrak (pack.), 302
Euler Fraktur (math alphabet), 180, 197, 301, 302, 390, 512
Euler Script (math alphabet), 301, 302, 390, 512
European
accents, 15, 79-80
characters, 15, 79-80, 515-516, 519
quotation marks, 519
European Modern (EM) fonts, 524
ex (rel. unit), 403
examples
of bibliographies, 40-41, 43, 47, 261-263, 421-423
of indexes, 450-452
of nonbreakable spaces (\(\sim\) spacing com.), 76
of top matter commands, 282-285
\except (table of contents com.), 473
exclamation marks (!), 9, 62
as float control, 260, 486
in \index commands, 453, 454, 457
Spanish (i), 81, 515, 518
terminating sentences with, 64-67
executivepaper (doc. class opt.), 306
exercises, 476
in books, 476
within a section, 476
\(\backslash\) exists (\(\exists\) math sym.), 508
exiting, from interactive mode, 491, 534
\(\backslash \exp (\exp\) math op.), 172,510
expanding values of counters, 80,400
exscale (pack.), 301, 311
extensibility of \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) and \(\mathrm{T}_{\mathrm{E}} \mathrm{X}, 525\)

F

Fairbairns, Robin, 523
\fallingdotseq (\because binary rel.), 504
fancyhdr (pack.), 270, 537, 540
FAQ (Frequently Asked Questions), 539, 542
\fboxrule (length com.), 110
\fboxsep (length com.), 110
\fcolorbox (beamer com.), 349
fd (font def. file), 544, 545, 546
Fear, Simon, 140
fields, bibliographic, see under bib
figure (counter), 399
figure (float env.), 39, 259-260, 327
optional arguments of, 260, 486
placement of, 484, 486
figure* (float env.), 259
\figurename (redef. name), 375, 376
and hyperref package, 323
figures, 259-260
captions in, 476
fragile commands in, 74
commands for, 259, 476, 479
double-column, 259
forcing typesetting of, 101
lists of, see also under lists, 475-476
adding a line to, 476
fragile commands in, 74
figures (continued)
numbering of, 258, 259
old-style, 62
placement of, 260, 484, 486
file formats, for graphics
EPS, 39, 259, 483, 496, 552
PDF, 39, 259, 326
file transfer protocol, see FTP
fileerr (pack.), 313
files
MakeIndex log, see ilg
auxiliary, see aux
BibTEX databases, see bib
BibTEX log, see blg
BIBTEX style, see bst
class (cls), see under document classes
command, see command files
converting from articles to presentations, 53, 326
documents composed of multiple, 476-479
DVI, see DVI files
Encapsulated PostScript, see EPS
font definition, see fd
font metric, see also tfm , see under font metrics
glossary, see glo
hyperref bookmarks, see out
hyphenation pattern, see under hyphenation
including in other files, 386, 478
index entry, see idx
list
of figures, see lof
of tables, see lot
listing those used by a document, 387
\log, see \log files
naming of, 44
with \graphicspath command, 479
organization of, 476-479
package source, see under packages
portability of, 9
Portable Document Format, see PDF, see PDF
PostScript (PS), see under PostScript
processed bibliography, see bbl
processed index, see ind
sample, see sample files
source, see source files
start on new page with \include command, 478
style, see sty
tables of contents, see toc
terminating, 392, 478
filling horizontal space, 106, 113, 126, 186, 233, 235, 414
final (doc. class opt.), 300, 306
final preparation, of books, 482-487
fine tuning
of mathematical formulas, 190-192
placement of root with \sqrt, 162
placement of text boxes, 115
\backslash Finv (\rfloor math sym.), 508
fixed-size math delimiters, 168
fixltx2e.dtx, 311
fixltx2e.ins, 311
fixltx2e.sty, 311, 312
flalign (math align. env.), 208, 210, 221
\flat (b math sym.), 508
fleqn (doc. class opt.), 298, 307
floats, see also tables and figures, 258-261
commands, 259, 260
controls, 134, 260-261
environments, 133, 258-260
figure, 39, 259-260, 260, 327
figure*, 259
locating, 484, 486
table, 134, 258, 260
table*, 259
forcing typesetting of, 101
specifying placement of, 260, 484
floor math delimiters, 167, 509
flush left
alignment of formulas, 209, 210, 212, 214, 221, 307
column alignment, 231-232, 236
columns in tabular environments, 135 setting equations, 298, 307
flush right
alignment of formulas, 209, 210, 212, 214, 221
alignment of text, 106
column alignment, 231-232, 236
columns in tabular environments, 135 setting equations, 298, 307
flushleft (text align. env.), 8, 124, 407 breaking lines in, 124
flushright (text align. env.), 8, 68, 124, 407 breaking lines in, 124
\backslash fnsymbol (footnote counter style com.), 87
\foilhead (FoilTEX com.), 53, 55 optional argument of, 56
foils (doc. class), 53
FoilTEX, 53
commands for, 55
folders, 3
samples, see samples
structure of, 477-479
work, see work
font command declarations, see also font commands, 90
for shape
\em, 90, 91, 92, 123, 516
\itshape, 90, 91, 92, 94, 123, 412, 516
\normalfont, 90, 90, 123, 163, 516, 545
\rmfamily, 90, 123, 516
\scshape, 90, 91, 123, 516
\sffamily, 90, 94, 123, 516
\slshape, 90, 91, 92, 94, 95, 123, 516
\ttfamily, 90, 123, 142, 516
\upshape, 90, 91, 123, 382, 412, 516
for weight
\backslash bfseries, 71, 73, 90, 93, 94, 95, 123, 516
\mdseries, 90, 93, 516
font commands, see also font command declarations
and italic correction, 90, 92
and MakeIndex, 90
for selecting fonts using family names, 544
for series
\textmd, 90, 93, 516
for shape
\emph, 14, 68, 90, 91, 337, 516
\textit, 90, 91, 337, 516
\textnormal, 90, 90, 163, 516
\textrm, 90, 301, 516
\textsc, 90, 91, 516
\textsf, 90, 516
\textsl, 90, 91, 516
\texttt, 14, 76, 90, 516
\textup, 90, 91, 516
\upn, 156
for size
\footnotesize, 93, 94, 517
\backslash Huge, 93, 93, 517
\huge, 93, 93, 517
\LARGE, 93, 93, 517
\Large, 93, 93, 94, 517
\large, 93, 93, 517
\larger, 94
\normalsize, 93, 93, 517
\scriptsize, 93, 93, 517
\SMALL, 93, 93, 517
\Small, 93, 93, 517
\small, 93, 93, 517
\Tiny, 93, 93, 517
\tiny, 93, 93, 517
for weight
\textbf, 14, 73, 90, 93, 163, 301, 337, 516
low-level, 95
math, see math font commands
obsolete, 94
orthogonality of, $\mathbf{9 4}$
two-letter (obs. ETEX 2.09), and italic correction, 95
using in math environments, 163
font encodings, 78, 78
koi8-u, 548
LY1, 545, 546
OT1, 544
T1, 82, 519, 547
font environments
for series
bfseries, 123
for shape
em, 123
itshape, 123
rmfamily, 123
scshape, 123
sffamily, 123
slshape, 123
ttfamily, 123
upshape, 123
for weight
bfseries, 123
font families, document, see document font families
font metrics files, 318, 529, 544, 545
font series, 89, 93
command declarations for, see command declarations
commands for, see under font commands
environments for, see under font environments
font shapes
command declarations for, see under font command declarations
commands for, see under font commands
environments for, see under font environments
sans serif, 89
serif, 89
font substitution, 94, 318, 484
warning messages, 94
font weight, 89
command declarations for, see under font command declarations
commands for, see under font commands
environments for, see under font environments
font width, 89
fontenc (pack.), 545, 547, 548
\fontfamily (font selection com.), 544
fonts
AMSFonts, 300, 301-302, 525, 528
document class options for, 300
obtaining, 540
PostScript versions of, 300, 301, 524, 525, 533
technical support for, 542
updates to, 533
bitmap, 543
blackboard bold, 181, 197, 390
bold math, 184, 196, 196, 197, 512
calligraphic, 185, 197, 301, 390, 512
commands, see under font commands and font command declarations
Computer Modern, see Computer Modern
Courier (typewriter shape), 317, 496, 544
encodings, see font encodings
Euler Fraktur, 180, 197, 301, 302, 390, 512
Euler Script, 301, 302, 390, 512
European Modern (EM), see European Modern fonts
for text in math mode, 163
Helvetica, 89, 544
including in PDF files, 318
including in PostScript files, 317
Lucida Bright, 543, 546
math, 195-197
size of, 199
monospaced, 88
names of
EATEX 2.09, 313
PSNFSS (Berry scheme), 544
PostScript, see under PostScript
proportional, 88
proprietary
using in PDF files, 318
using in PostScript files, 317
samples, 313
selecting, 88-95
with \fontfamily command, 544
with \selectfont command, 95, 544
shapes, see font shapes
size of, 55, 89, 93, 93-94, 123, 517
document class options for, 297, 306
sources for, 546
substitution of, $94,318,484$
Times, 89, 544-545
typewriter style, 88
weight, see font weight
width, see font width
fontsmpl (pack.), 313
fonttbl.tex (sample file), 78, 134
footers, page, 268-270
\footnote, 87
footnote (counter), 399
footnotes, 87-88
and double-column documents, 313
fragile commands in, 74
in minipage environments, 112
indicated by symbols, 87
on title pages, 87
unmarked, 44, 279
\footnotesize, 93, 94, 517
\forall (\forall math sym.), 508
forcing
floats to typeset, 101
indentation, 99
formats
LeTEX, 529
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$
creating with initex, 528
files read by virtex, 528
Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}, 528$
formats, file, see file formats
formatting of documents, determined by document classes, 61
formula.tex (sample file), 164-166
formulas, 18
adjusted, 210, 231-242
flush left and right, 214
aligning, 30-32, 209-210, 219-231, 242, 298, 524
multiline, 217-218
rules for, 217-218, 221
text in, 226-227
annotating, 225
boxed, see under boxes
breaking into multiple lines, 30-31,

217-218

displayed, 483
rules for, 217
commas in, 155
components of, 22-27, 157-162
building using, 164-166
displayed, see displayed math environments
gallery, 180-186
grouping, 210, 211-212
inline, see inline math environments
multiline, 30-32
splitting, 212-214
numbering, see under equation
specifying fonts for, 163
foundries, type, 544, 546
\backslash frac $\left(\frac{x}{y}\right), 19,21,23,70,158,186,200$
fractions, 19, 21, 23, 70, 158, 186
continued, 200
displayed, 158, 186
generalized, 204-205
inline, 158
fragile commands, 74
protecting, 74, 252, 253, 466, 475
frame (beamer env.), 327, 328, 344
\framebox, 109
frames, see also under presentations, 327, 358
environments of, 327
outline (table of contents), 328
titles, 327, 358
\frametitle (beamer com.), 327, 328, 344
\frenchspacing (spacing com.), 67
Frequently Asked Questions (FAQ), 539, 542
front matter, 467
numbering of chapters in, 467
of AMS documents, 285
of books, 473-475
\frontmatter (struct. com.), 467
\frown (\frown binary rel.), 503
ftnright (pack.), 313
FTP (File Transfer Protocol), 538

G

\Game (D math sym.), 508
\Gamma (Γ Greek char.), 502
\gamma (γ Greek char.), 502
gather (disp. math env.), 208, 210, 211-212, 219, 483
page breaks in, 242
rules for, 211
gather* (disp. math env.), 211
gathered (subsid. math env.), 211, 227-230
and \allowdisplaybreaks commands, 243
\gcd (gcd math op.), 172, 510
\ge (\geq binary rel.), 503
generalized
commands, see user-defined commands
fractions, 204-205
\genfrac (math com.), 204-205
geometry (pack.), 270
\geq (\geq binary rel.), 503
\geqq (\geqq binary rel.), 504
\geqslant (\geqslant binary rel.), 504
german (opt. of babel pack.), 548
german.tex (sample file), 548
$\backslash \mathrm{gg}$ ($>$ binary rel.), 503
gg.tex (sample file), 44-48
gg2.tex (sample file), 45-46
ggamsart.tpl (template file), 297
\ggg (\gg binary rel.), 504
\gimel (】 Hebrew char.), 501
glo (glossary files), 464, 531
global commands, see under scope
glossaries, 464
as a custom list environment, 414
auxiliary file (glo), 464, 531
defining, 464, 531
\glossary (glossary com.), 464, 531
glue, 378, 407, 530, 530
horizontal, 530
parameters of, 530
vertical, see also under vertical spacing, 530
glyphs, see also characters
measuring, 530
\gnapprox ($\not \approx$ neg. binary rel.), 505
\backslash gneq (\geqslant neg. binary rel.), 505
\gneqq (\nexists neg. binary rel.), 505
lgnsim ($\not \underset{\chi}{ }$ neg. binary rel.), 505
go to line productivity tool, see jump to a line Google, 464, 538
Goossens, Michel, xxxiii, 558, 559
graphics
commands for, $54,259, \mathbf{2 5 9}, 260,327$, 341, 479, 496
file extensions in, 496
in presentations, 342
formats
EPS, 39, 259, 483, 496, 552
PDF, 39, 259, 326
including in documents, 259-260
scaling, 259
graphics (EATEX distr. directory), 311, 539
graphics (pack.), 312
\graphicspath (graphics com.), 477
graphicx (pack.), 37, 39, 250, 259-260, 300, 523, 552
grave (` grave text accent), 62, 79, 516
\grave (\grave{x} math accent), 177, 512
greater than ($>$)
as binary relation, 503
text symbol, 81,518
Greek letters, 181, 389-390, 502
Greenwade, George D., 99
grouping
chapters into parts, 466
equations, 203-204
formulas, 210, 211-212
symbols with math delimiters, 169
groups
of equations, 203-204
cross-referencing, 218-219
labels for, 204
numbering, 218-219
of tokens, 530
\gtrapprox (ぇ binary rel.), 504
lgtrdot (> binary rel.), 504
\gtreqless ($<$ binary rel.), 504
\gtreqqless (\gtreqless binary rel.), 504
\gtrless (\gtrless binary rel.), 504
\gtrsim ($~$ binary rel.), 504
guillemets, 519
\guillemotleft (Eur. quot. mark), 519
\guillemotright (Eur. quot. mark), 519
\guilsingleft (Eur. quot. mark), 519
\guilsingright (Eur. quot. mark), 519
Gurari, Eitan, 558
GUTenberg (French $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user group), 541
\gvertneqq (\ddagger neg. binary rel.), 505

H

\H double acute text accent ("), 79, 516
Hahn, Harley, 554, 558
handout (beamer doc. class opt.), 358
\backslash hangafter
TEX command, 377
length command, 100
\hangindent (length com.), 99
hanging indentation, 99-100, 145
Hargreaves, Kathryn A., 553, 557
Harrison, Michael A., 449, 463, 557
Hart, Horace, 553, 559
\hat (\hat{x} math accent), 25, 177, 512
$\backslash h b a r$ (\hbar math sym.), 508
\backslash hdotsfor (space fill com.), 186, 233, 235
optional argument of, 233
headers, page, see running heads
headings (page style), 268
\backslash headtoname (redef. name), 376
\heartsuit (\triangle math sym.), 508
Hebrew letters, 501
\backslash height (length com.), 108, 108, 111
height, of text boxes, $108,110,111,113,405$, 405
Helvetica (sans serif font), 89, 544
\hfill (space fill com.), 106, 126, 131, 414
$\backslash H f o o t n o t e n a m e ~(h y p e r r e f ~ r e d e f . ~ n a m e), ~$ 323
\hfuzz (\backslash hbox warning adjustment), 96
hhline (pack.), 140, 313
hierarchy of structural commands, 252, 466
history of $\mathcal{A}_{\mathcal{M}} \mathcal{S}^{-L E T} \mathrm{~T}_{\mathrm{E}} X, \mathcal{A}_{\mathcal{M}} \mathcal{S}^{-\mathrm{T}_{\mathrm{E}} X}, \mathrm{~T}_{\mathrm{E}} \mathrm{X}$, and IATEX, 521-525
\hline (table com.), 135, 137
Høgholm, Morten, 206
\hom (hom math op.), 172, 510
\hookleftarrow (\hookleftarrow math arrow), 507
\hookrightarrow (\hookrightarrow math arrow), 507
horizontal lines (rules), in tabular environments, 135, 137
horizontal spacing, 313
adjusting, 188
commands $_{\bullet}($ interword space) $, 11,66,70,102$, 190, 520
\! (negthinspace), 182, 190, 190, 513, 520

, (thinspace), 25, 67, 75, 188, 190, 190, 513, 520
\: (medspace), 190, 513, 520
\; (thickspace), 190, 513, 520
\@. (intersentence space), 520
 (fill com.), 106
\frenchspacing, 67
\hdotsfor (fill com.), 186, 233, 235
\hfill (fill com.), 106, 126, 131, 414
\hrulefill (fill com.), 106, 113
\backslash hspace, 102, 142
\hspace*, 69, 103-104
\backslash medspace, 190, 513, 520
\mspace, 190, 190, 513
\negmedspace, 190, 513, 520
\negthickspace, 190, 513, 520
\negthinspace, 182, 190, 190, 513, 520
\nobreakspace, 76
\nonfrenchspacing, 67
\phantom, 102-103, 191-192, 223, 406
\qquad, 27, 102, 105, 190, 190, 224, 513, 520
\quad, 24, 27, 102, 105, 154, 190, 190, $225,513,520$
\thickspace, 190, 513, 520
\thinspace, 25, 67, 75, 188, 190, 190, 513, 520
to avoid using, 481
\xspace, 368-369
in math, 19, 154-156, 187-192, 233, 236
in text, 11, 64-67, 102-104, 114, 126, 414, 513, 520
intersentence, 11, 64-67
interword space (()$, 11,64-67,70,76$, 102, 383, 427
preventing removal of, 103
howpublished ($\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database field), 425
\href (hyperref com.), 323
\hrulefill (space fill com.), 106, 113
\hslash (\hbar math sym.), 508
\backslash hspace (spacing com.), 102, 142
\hspace* (spacing com.), 69, 103-104
HTTP (Hypertext Transfer Protocol), 538
\backslash Huge (font size com.), 93, 93, 517
\backslash huge (font size com.), 93, 93, 517
\hyperlink (beamer com.), 344
hyperlinks, 319
in PDF files, 319-323
increasing size of, 322
suppressing, 322
to bibliographic citations, 321
to Web sites, 322-323
in presentations, 343-347, 358
putting bookmarks in documents, 321
to bibliographic citations, 321
with hyperref pack., 320, 321, 320-322
hyperref (pack.), 320-323
bookmarks file (out), 321
commands
\autoref, 320, 320, 322, 323
\pageref, 322
\ref, 322
\urladdr, 323
\WriteBookmarks, 322
documentation for, 320
options, 320
bookmarks=true, 320, 321
colorlinks, 320, 321, 321
dvipdf, 320
dvipdfm, 320
dvipdfmx, 320
dvips, 320
dvipsone, 320
dviwindo, 320
hypertex, 320
pagebackref, 320, 321, 321
pdftex, 320
ps2pdf, 320
tex4ht, 320
textures, 320
vtex, 320
hypertex (opt. of hyperref pack.), 320
Hypertext Transfer Protocol, see HTTP
hyphen.tex, 82
hyphenation, 13, 82-85, 530
determined by optional hyphen, 82
displaying, 84
LATEX's algorithm, 79, 82
of German text, 13, 548
of hyphenated words, 13
of words with accents, 82
preventing, 83-84, 107
rules for English, 85
specifying, 82
tables, 528
\hyphenation, 82
hyphens, 14, 62, 75
key, 9, 63
optional, 13, 82, 82, 96, 483
unbreakable, 83

I

\i (1 dotless i), 79, 79, 516
\idotsint ($\int \cdots \int$ large math op.), 161, 175, 511
idx (index aux. file), 459, 460, 461, 464
\iff (\Longleftrightarrow math arrow), 365, 507
\ignorespacesafterend (spacing com.), 383
\iiiint ($\iiint \int$ large math op.), 161, 175, 511
\iiint (\iiint large math op.), 161, 175, 511
\iint (\iint large math op.), 161, 175, 511
ilg (MakeIndex log files), 461
illustrations, 258, 259-260
commands for, 479, 496
double-column, 259
Encapsulated PostScript (EPS), 39, 259, 476, 483, 496
graphicx (pack.), 250, 259
placement of, 102, 260
portability of, 552
Portable Document Format (PDF), 39, 259, 476, 496, 552
preparation of, 483
sample files, $39,54,327$
scaling, 54, 259
with graphicx (pack.), 37
with the picture environment, 259
$\backslash \operatorname{Im}$ (§ math sym.), 508
\imath (\imath math sym.), 508
implementations, $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$, see $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ implementations
\in (\in binary rel. $)$, 503
in (inch abs. unit), 12, 15, 96, 105, 107, 111, 403
inbibl.tpl (sample file), 263
INBOOK (bibl. entry type), 424, 436
inch (in abs. unit), 12, 15, 96, 105, 107, 111, 403
\include (inclusion com.), 392, 477, 478
and auxiliary files, 531
and counters, 400
errors with, 478
files start on new pages, 478
\)
environment for, 267, 407, 449, 459
page ranges, 454-455
placement of commands for, 458
processed files (ind), 487
processed index files (ind), 459-461
rules for, 462-463
typesetting entries in margins, 311
with AMS document classes, 450
with user-defined commands, 371
\indexname (redef. name), 376
\indexspace (indexing com.), 449
\inf (inf math op.), 172, 299, 510
information, top matter
AMS specific, 279-281
AMS subject classifications, 279
keywords, 280, 297
author, 275-279, 304
addresses, 44, 277, 296
current addresses, 277, 281
e-mail addresses, 278, 281, 296
Internet addresses, 278, 281, 296
research support, 44, 279, 281, 296, 304
for articles, 37-38, 273-285
author names, 276, 296, 304
dedications, 275
title, 273, 297, 304
translator, 274
\infty (∞ math sym.), 20, 508
initex ($\mathrm{T}_{\mathrm{E}} \mathrm{X}$ program), 528
initials
periods in, 67
typographical rules for, 67
\injlim (inj lim math op.), 172
inline
fractions, 158
math formulas, see inline math environments
tables, 133
inline math environments, 17, 152

((start math mode), 18, 74, 152

) (end math mode), 18, 74, 152
act as special braces, 152, 153
and $\$, 17,18,33,74,152,152$
display-style binomials in, 158
font size of, 199
math, 152
matrices in, 235
size of delimiters in, 170
INPROCEEDINGS (bibl. entry type), 424, 430-431
\input (inclusion com.), 528
inputenc (pack.), 547
\institute (beamer com.), 326
institution (BIBTEX database field), 425 instructions to $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, see also commands and environments, $7,11,35,48,63,67$, 248, 252, 534
\int (\int large math op.), 25, 175, 511 integrals, 25, 161, 299
integration of fonts into $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}, 523,543$
interactive mode, 113, 376-378, 491, 534-535
\intercal (\dagger math op.), 506
intercolumn spacing, 209, 220, 220
in aligned math environments, 224, 228
in tabular environments, 136
interline spacing, 242
adjusting, 95, 98-99, 104
international $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users groups, 537
Internet, 278, 322, 415, 538
addresses, 279, 323
in top matter (\urladdr com.), 278, 279, 296, 323
and IATEX, 537-542
browsers, 538, 540
FTP transfers, 538
viewing PDF files in, 318
documents in PostScript format, 317
finding ${ }^{A} T_{E} \mathrm{X}$ and $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ related material on, 537
finding $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ - and $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-related material on, 538
hyperlinks in PDF documents, 319, 323
LATEX and TEX resources on, 538, 542
putting ${ }^{\text {ITTEX}}$ documents on, 317-323
types of sites for downloading files, 538
intersentence spaces (\@.), 11, 64-67,520
and \frenchspacing, 67
and \nonfrenchspacing, 67
\intertext (text in math com.), 226-227
interword space, 11, 64-67, 76, 383, 427
and \frenchspacing, 67
and \nonfrenchspacing, 67
command (\ப), 11, 66, 70, 102, 190, 520
intlimits (opt. of amsmath pack.), 299
intrart.tex (sample file), 35-43, 53, 55, 326, 331
typeset, 41-43
intrarti.idx (index entry file), 459, 460, 461
intrarti.ilg (index log file), 461
intrarti.ind (index proc. file), 459-461
intrarti.tex (sample file), 450-452, 460, 459-461
intropres.tex (sample file), 53, 55, 57-58
invalid characters, 9,63
inverse search, see synchronization
invisible boxes, see struts
invoking
delimited commands, 378
proclamations, 37, 46, 52, 125, 128, 343, 384
user-defined commands, 366
\iota (ι Greek char.), 502
ISBN (bibl. com.), 425
\it (obs. EATEX 2.09 font com.), 94
italic correction, 91-93, 520
and commas, 92
and \em, 92
and font commands, 90, 92
and \itshape, 92
and periods, 92
and \slshape, 92
suppressing, 92
with two-letter font commands, 95
italics
bold math, 197
font shape, $14,28,68,88,90,91,94, \mathbf{1 2 3}$, 412, 516
in math mode, 196, 196, 512
math font, 196
- (list item com.), 118-123
and square brackets, 122
in simple indexes, 267, 449
optional arguments of, 120, 122, 409, 410
- indent (length com.), 407, 408
itemize (text list env.), 118, 119
\Itemname (hyperref redef. name), 323
- sep (length com.), 407, 413
\itshape (font shape com. dec.), 90, 91, 94, 123, 412, 516
and italic correction, 92
itshape (font shape env.), 123

J

\j (J dotless j), 79, 79, 516
Jackowski, Bogusław, 525
Java, with BibTEX, 447
JavaScript, 318
Jeffrey, Alan, 523
Jensen, Frank, 403
\jmath (\jmath math sym.), 508
\backslash Join (\bowtie binary rel.), 503
Jones, David M., 447, 524
journal (BiBTEX database field), 425
Jr., in bibliographic entries, 426
jump to a line productivity tool, 6, 494, 498
justification of text
left, 8
right, $8,14,68$

K

\k (ogonek Eur. accent), 519
\backslash kappa (κ Greek char.), 502
\ker (ker math op.), 172, 510

Kern, Uwe, 325, 348, 349, 559
kerning, 529, 530
key (BibTEX database field), 425
keyboard, 8-9, 11, 62-64, 547
equivalents, 494, 499
keys, 17
alphanumeric, 8-9
arrow, 53
Enter, see Return key
Esc (escape), 63, 365
letter, 8-9, 62
math symbol, 63
math typing, 17
modifier, 62, 63
number, 62
prohibited, 9, 63
Return, 9, 11, 63
space bar, $9,11,53,63,325,334$
special, $9,17, \mathbf{6 3}, 76$
Tab, 9, 11, 63
keys, sorting (in \index commands), 455-456
case sensitivity of, 462
\backslash keywords (top matter com.), 297
rules for using, 280
keywords (bibl. com.), 425
\keywordsname (redef. name), 376
\kill (tabbing com.), 141, 142
Knuth, Donald E., xxix, 363, 521-523, 525, 528, 539, 553, 559
koi8-u (font encoding), 548

L

L, slashed ($七, ~ ł), ~ 81,515$
\backslash label (cross-ref. com.), 28, 29, 31, 50, 156, 215, 231, 252, 255, 328
and simple indexes, 267
arguments of, 29, 257
assigning counters to, 402
in table environments, 259
placement of commands, 486
rules for, 257
showing in margin, 257, 313
with
, 215
labels
for \bibitem commands, 263
for bibliographic items, 48, 121
for equations, 255
for groups of equations, 204
in list environments, 121, 121
of items in a list environment, 408, 409, 410
setting with \label, 255
\labelsep (length com.), 407, 408
\labelwidth (length com.), 407, 408
\Lambda (Λ Greek char.), 502
\lambda (λ Greek char.), 502
Lamport, Leslie, xxix, 403, 522, 523, 529, 552, 559
\land (^ math op.), 506
landscape (doc. class opt.), 307
\langle (\langle math delimiter), 167, 168, 509
language ($\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database field), 425
\LARGE (font size com.), 93, 93, 517
\Large (font size com.), 93, 93, 94, 517
large
math delimiters
in array subsidiary math environment, 313
operators, 25, 26, 161, 175, 174-176, 511
limits of, 174, 299
sizing of math delimiters with, 169 symbols, 117, 227-230
\large (font size com.), 93, 93, 517
\larger (font size com.), 94
LATEX, 521, 525
and the Internet, 537-542
counters, 399
customizing, 363-417
distribution, 78, 86, 310-313, 489, 525, 528, 529, 532, 534, 539, 540
components of, 303-308
directories, 257, 310-311, 312, 540, 547, 553
on CTAN, 540
document classes, see under document classes
document structure, 247-270, 467
documentation for, 311, 552
packages, 312
documents, 247-270
printing and viewing, 530
putting on the Internet, 317-323
files created by, 531-534
files, portability of, 9
font substitution, 94, 318, 484
formats, 529
history of, 521-525
implementations, xxvi, $3,5,311,318,326$, 525, 537
discussion groups, 542
for Mac, 3, 326, 489, 495-499
PC, 3
for PC, 326, 489-494
productivity tools, 5, 494, 498
technical support for, 541-542
UNIX, 3, 442, 461, 489
inner workings of, 528-534
layers of, 528-529
localization of, 79, 547-548
numbers stored by, 80
omissions in discussion of, 551-552
overview of, 521-536
packages, see under packages
release dates of, 86, 251, 532
resources on the Internet, 542
source files, see under source files
spacing in text, 11
structure of, 525, 526
updates to, 532
using, 525, 527
versions of, 532-534
specifying, in documents, $86,250,386$, 532
writing books with, 465-487
latex (${ }^{\mathrm{AT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ distr. directory), 499
\LaTeX (ETEX logo com.), 8, 80
LATEX 2.09, 386, 522-524
font names, 313
two-letter font commands, 94, 94
LATEX 2ε, see IATEX
latex.ltx, 311
LATEX3, 523, 524, 541
\backslash LaTeXe (EATEX 2ε logo com.), 80, 524
latexsym (pack.), 37, 180, 249, 294, 300, 311
layers, of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{T}_{\mathrm{E}} \mathrm{X}, 528-529$
layout
of a list, 408
of Computer Modern typewriter font, 78, 78
of pages, 268-270, 313, 525
\layout (page-layout diagram com.), 268
layout (pack.), 268, 313
\lbrace ($\{$ math delimiter), 167, 509
\lbrack ([math delimiter), 167, 509
\lceil (\lceil math delimiter), 167, 509
··· (...)
in math, 160, 186
in text, 24
\le (\leq binary rel.), 503
\backslash leadsto (\sim math arrow), 507
\left (math delim.), 167-168, 170, 184, 235
blank, 168, 182
must be balanced, 168,217
left double quote (")
text symbol, 75, 81, 518
typing, 11
left justification of text, 8
left single quote (')
key, $9,11,62,75$
text symbol, 75, 519
\left (((math delimiter), 24, 26, 166, 168, 184, 217, 235
\left. (blank math delim.), 168, 182
\left<((math delimiter), 168
\left[([math delimiter), 24, 166, 182
\Leftarrow (\Leftarrow math arrow), 507
\leftarrow (\leftarrow math arrow), 364, 374, 507
\leftarrowtail (\leftarrow math arrow), 507
\leftharpoondown (\leftharpoondown math arrow), 507
\leftharpoonup (८ math arrow), 507
\leftleftarrows (\ddagger math arrow), 507
$\backslash l e f t m a r g i n$ (length com.), 407, 408, 411
\Leftrightarrow (\Leftrightarrow math arrow), 507
\leftrightarrow (\leftrightarrow math arrow), 507
\leftrightarrows (\leftrightarrows math arrow), 507
\leftrightharpoons (\leftrightharpoons math arrow), 507
\leftrightsquigarrow ($\rightsquigarrow \rightsquigarrow$ math arrow), 507
\leftroot (root-adjustment com.), 162
\leftthreetimes (λ math op.), 506
\left| (| math delimiter), 24, 26, 168, 180, 189, 191

legacy

document classes, $54,118,249,254,263$, 273, 302, 305, 303-313, 529
documents, 319
environments, 123, 143-145, 407
quotation, 144
quote, 143
verse, 144
legacy-article.tex (sample file), 304, 305
legalpaper (doc. class opt.), 85, 298, 306
Lehman, Philipp, 447
lemmas, see proclamations
length commands, 108, 270, 398, 403-406
and boxes, 405
arithmetic with, 312, 405
\baselineskip, 95, 101
\baselinestretch, 99
defining new, 404
\depth, 108, 108, 111
\fboxrule, 110
\fboxsep, 110
\hangafter, 100
\hangindent, 99
\height, 108, 108, 111
in list environments, 407
- indent, 407, 408
- sep, 407, 413
\labelsep, 407, 408
\labelwidth, 407, 408
\leftmargin, 407, 408, 411
\listparindent, 407, 408, 414
\(\backslash\) marginparpush, 404
\marginparwidth, 113
\medskipamount, 377, 406
\multlinegap, 213
\oddsidemargin, 270
\overfullrule, 96
\parindent, 404, 414
length commands (continued)
\parsep, 407, 408, 413, 414
\parskip, 404, 407, 408, 414, 481
\partopsep, 407
\rightmargin, 407, 408, 411
setting, 99, 100, 113, 404-406
\textwidth, 270, 398, 404
\topsep, 407, 408
\totalheight, 108, 108, 110, 111
\width, 108, 108, 111
lengths, rubber, see rubber lengths
\(\backslash\) leq (\(\leq\) binary rel.), 503
leqno (doc. class opt.), 298, 307
\leqq (\(\leqq\) binary rel.), 504
\(\backslash\) leqslant (\(\leqslant\) binary rel.), 504
less than (\(<\))
as binary relation, 503
text symbol, 81,518
\lessapprox (§ binary rel.), 504
\lessdot (\(\lessdot\) binary rel.), 504
\lesseqgtr (\(\lesseqgtr\) binary rel.), 504
\lesseqqgtr (\(\lesseqgtr\) binary rel.), 504
\lessgtr (\(\$\) binary rel.), 504
\lesssim (\(\lesssim\) binary rel.), 504
letter (doc. class), 308-310, 529
letter (letter env.), 308-310
argument of, 309
breaking lines in, 309
errors with, 309
letter keys, 8-9, 62
letter.tex (sample file), 308-310
letterpaper (doc. class opt.), 298, 306
letters
counter style, 401
Greek, 181, 389-390, 502
Hebrew, 501
Levy, Silvio, 553, 560
\lfloor (\(\lfloor\) math delimiter), 167, 509
\lg (lg math op.), 172, 510
\lhd (\(\triangleleft\) math op.), 506
ligatures, 79
suppressing, 79, 181, 365
\lim (lim math op.), 172, 510
\liminf (lim inf math op.), 172, 510 limits
as subscripts, 25, 161, 171-174, 182, 299
as superscripts, \(\mathbf{2 5}, \mathbf{1 6 1}, 174,182,299\)
large operators with, \(25,27,161,174,174\), 175, 299, 511
multiline, 176
operators with, 171, 172, 299, 510
placement of, 299
\limits (limit-control com.), 161, 174
\limsup (lim sup math op.), 172, 510
line boxes, see under boxes
line ending characters, 63-65, 68, 84, 102
commenting out, \(84,85,458\)
on Mac, PCs, and UnIX systems, 9
translation of, 63
line numbers, in error messages, 6, 9, 153, 154
\linebreak (line breaking com.), 484, 486
\linebreak (line-breaking com.), 97, 97
optional arguments of, 98
lines
adding to
lists of figures and tables, 476
tables of contents, 473-474
blank
in displayed math environments, 51, 153, 157, 215
in inline math environments, 153
in text environments, 118
in top matter commands, 273
in verbatim environments, 146
terminating paragraphs with, \(11,64,99\), 118, 144
breaking, 15
preventing, 99
with \(\backslash \backslash, 25,30,31,33,44,46,98,124\), \(135,141,142,145,176,211,213\), 215, 216, 227, 231, 242, 273-278, 297, 304, 309, 358
distance between, 104
adjusting, 114
filling with space or dots, 106, 113, 126, 186, 233, 235, 414
separating
with \(\backslash \backslash, 25,30,31,33,44,46,98,124\), \(135,141,142,145,176,211,213\), 215, 216, 227, 231, 242, 273-278, 297, 304, 309, 358
with \linebreak, 97, 97, 484, 486
stretchable, 179
too wide warnings, \(12-13\)
wrapping, 84
lines (rules)
horizontal
filling lines with, 106, 113
in tabular environments, 135, 137
intersecting in tables, 140, 313
vertical
in CD environments, 241
in tabular environments, 135
links, hyper, see hyperlinks
Linux, 3, see also UNIX, 554
list (list text env.), 118, 406, 408, 409-414
arguments of, 410
length commands in, 407
using counters with, 411
list text environments, see also specific environments, 118-123
description, 120
enumerate, 119, 123
in proclamations, 126
itemize, 119
list, 118
mixing, 121
nesting, 121
rules for, 120
trivlist, 414
\listfigurename (redef. name), 375, 376
\listfiles (file list com.), 387, 532, 533
listing files used by a document, 387, 533
\listoffigures (front matter com.), 475, 532
\listoftables (front matter com.), 475, 532
\listparindent (length com.), 407, 408, 414 lists
cross-referencing items in, 119, 123
custom
and counters, 410
defining, 406-415
environments for, see list text environments
in presentations, 339-341
of figures, 475-476
adding a line to, 476
auxiliary file (lof), 475, 487, 532
fragile commands in, 74
of tables, 134, 475-476
adding a line to, 476
auxiliary file (lot), 475, 487, 532
fragile commands in, 74
\listtablename (redef. name), 376
\ll (<< binary rel.), 503
\llcorner (\(\llcorner\) math delimiter), 167, 509
\Lleftarrow (\(\Leftarrow\) math arrow), 507
\lll (<< binary rel.), 504
\(\backslash \ln\) (ln math op.), 172, 510
\(\backslash\) napprox (\(\not \approx\) neg. binary rel.), 505
\(\backslash\) lneq (\(\leq\) neg. binary rel.), 505
\(\backslash\) lneqq (\(\varsubsetneqq\) neg. binary rel.), 505
\lnot (\(\neg\) math sym.), 508
\(\backslash \operatorname{lnsim}(\lesssim\) neg. binary rel.), 505
local commands, see under scope
localization, of ETEX, 547-548
locating errors, 87
location of BIBTEX database and style files, 439
lof (list of figures file), 475, 476, 487, 532
\(\backslash \log\) (log math op.), 172, 510
\(\log \left(\mathrm{LAT}_{\mathrm{E}} \mathrm{X} \log\right.\) file), 5, 5, 9, 12, 29, 84, 96, 378, \(386,441,475,493,499,526,531,533\)
error and warning messages recorded in,

$$
12,96
$$

\log files
for $\mathrm{BIBT}_{\mathrm{E}} X$, see blg
for indexes, see ilg
for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, see log
\log-like functions, see operators
logical
design, 52-53
of books, 479-481
units, $11,35-41,46,48,49,51,52,66,68$, 164, 248, 252-255, 261, 267, 285, 304, 308-310, 406, 437, 442, 449, 459, 466-467, 522, 536
hierarchy of, 252
numbering of, 403, 466
numbering of proclamations within, 128
logos, 80
long commands, 73
\Longleftarrow (\Longleftarrow math arrow), 507
\longleftarrow (\longleftarrow math arrow), 507
\Longleftrightarrow (\Longleftrightarrow math arrow), 507
\longleftrightarrow (\longleftrightarrow math arrow), 507
\longmapsto (\longmapsto math arrow), 507
\Longrightarrow (\Longrightarrow math arrow), 507
\longrightarrow (\longrightarrow math arrow), 507
longtable (pack.), 313
\looparrowleft (\leftarrow math arrow), 507
\looparrowright (\rightarrow math arrow), 507
\lor (V math op.), 506
lot (list of tables files), 475, 487, 532
low-level font commands, 95
for NFSS, 552
lowercase counter styles
letters ($\backslash \mathrm{alph}$), 401
roman numerals (\roman), 123, 401
lowline (_ text symbol), 77, 81, 518
\lozenge (\bigcirc math sym.), 508
\lrcorner (\lrcorner math delimiter), 167, 509
\Lsh (7 math arrow), 507
\ltimes (\ltimes math op.), 506
LuaTEX, 554
Lucida Bright, 543, 546
lucidabr (pack.), 546
lucidabr.dtx (PSNFSS distr. file), 546
lucidabr.fdd (PSNFSS distr. file), 546
lucidabr.ins (PSNFSS distr. file), 546
lucidabr.sty (PSNFSS distr. file), 546
lucidabr.yy (PSNFSS distr. file), 546
\IVert (|| math delimiter), 168
\lvert (| math delimiter), 168
$\backslash l$ vertneqq (\nsupseteq neg. binary rel.), 505
LY1 (pack. opt.), 545, 546

M

Mac, see Macintosh
line ending characters, 9

Macintosh, xxvi, 3, 4, 9, 319, 479, 489, 522
editing cycle with, 498
FTP clients, 538
LATEX $_{\mathrm{E}} \mathrm{X}$ implementations, 3, 326, 489, 495-499
OS X, 554
spelling checkers, 495
TeXShop LATEX $_{E}$ front end, xxvi, 9, 11, 53, 326, 442, 461, 496, 498
macron (${ }^{-}$text accent), 79,516
macros, see commands and user-defined commands
main entries, in indexes, $267,449,450,453$, 456, 457
main matter, 249, 251-261, 467
\mainmatter (struct. com.), 467
\backslash makebox (box com.), 107, 108, 109, 111, 113
makeglos (pack.), 464
\makeglossary (preamble glossary com.), 464, 531
makeidx (pack.), 311, 450, 478
MakeIndex, 77, 268, 449-464, 532
and font commands, 90
\maketitle (title-page com.), 37, 44, 46, 54, 248, 249, 469
and abstracts, 251, 285, 306
and page styles, 270
MANUAL (bibl. entry type), 424, 436
manuals, in BibTEX database files, 436
manuscripts
in BIBTEX database files, 435-436
preparing for publication, 465
\backslash mapsto (\mapsto math arrow), 507
\mapstochar (ımath arrow), 507
marginal comments, 112-113, 484
in double-sided documents, 112
in equations, 112
in multiline math environments, 112
space between, 404
width of paragraph box for, 113
\marginpar (marginal comment com.), 112
in double-sided documents, 112
\marginparpush (length com.), 404
\marginparwidth (length com.), 113
margins, 404, 407
of nested lists, 407
showing symbolic references in, 257, 313
\backslash markboth (left and right page header com.), 268
arguments of, 268
\markleft (left page header com.), 270, 281
\markright (right page header com.), 268
master document, 477-479
MASTERSTHESIS (bibl. entry type), 425, 433-434
math, 7
accents, 25, 176-178, 183, 185, 301, 377, 483
alphabets, 180-182, 185, 196, 195-197, 301, 390, 512
arrows, $179,187,240,507$
as delimiters, $166,167,168$
stretchable, 179, 240-242
vertical, 241
binary operations, see binary operations
binary relations, see binary relations
characters, 17, 63
commands, see math commands
environments, 152-154
aligned, see under aligned
and \verb commands, 148
blank lines in, 153, 157
displayed, see displayed math environments
inline, see inline math environments
multiline, 215-219, 333
page breaks in, 242
spaces in, 153
fonts, 195-197
blackboard bold, 181, 197, 390, 512
bold, 184, 196, 196, 197, 390, 512
bold italic, 196
calligraphic, 185, 197, 301, 390, 512
Euler Fraktur, 180, 197, 301, 302, 390, 512
Euler Script, 301, 390, 512, 512
italic, 196, 196, 512
roman, 196, 196, 512
sans serif, 196, 196, 512
size of, 199
typewriter, 196, 196, 512
mode, see math mode
multiline, 207-243
Visual Guide to, 207, 208
operators, $22,24,26,157,172,170-176$, 371, 506, 510
declaring, 173
large, 25, 26, 161, 169, 175, 174-176, 299, 511
with limits, $25,27,161,171,172,174$, 175, 299, 510, 511
subscripts and superscripts, 199
symbol alphabets, 197
blackboard bold, 197
calligraphic, 197
Euler Fraktur, 197
Greek, 197
symbols, see math symbols
text in, 19, 27, 83, 99, 107, 154, 162-163, 181, 196, 226-227, 241, 301
specifying fonts for, 163
typing, 17-33, 151-206
math (inline math env.), 152
math arrows, 179, 187, 240
as delimiters, 166, 167, 168, 509
stretchable, 179, 240-242
vertical, 241
math commands, $23,27,160,161,176,191$, 194, 200, 204
for alignment of formulas, 214
math delimiters, 24, 26, 167, 166-170, 180-184, 186, 188, 189, 191, 217, 235, 509
and large operators, 169
arrows, 166
balancing, 168, 182, 217
blank, 168, 182
fixed-size, 168
for grouping, 169
in inline math environments, 170
in smallmatrix subsidiary math environments, 235
large, in array subsidiary math environment, 313
left bracket ([), 24, 166, 182
right bracket (]), 24, 166, 182
specifying size of, 168, 184
stretchable, 167-168
with matrix variants, 234-235
math font commands, see also font command declarations and font commands
for bold
\boldsymbol, 184, 197, 198, 301, 512
\mathbb, 181, 197, 512
\mathbf, 184, 196, 196, 197, 512
\pmb, 198-199, 301
for italics
\mathit, 196, 196, 512
for series
\mathnormal, 196, 196, 512
for shape
\mathcal, 185, 197, 512
\mathfrak, 180, 197, 301, 302, 512
\mathrm, 196, 512
\mathscr, 301, 512, 512
\mathsf, 196, 196, 512
\mathtt, 196, 196, 512
for size
\displaystyle, 199, 204
\scriptscriptstyle, 199, 204
\scriptstyle, 199, 204
\textstyle, 199, 204
for weight
\boldsymbol, 184, 197, 198, 301, 512
\mathbf, 184, 196, 196, 197, 512
\pmb, 198-199, 301
math mode, 7, 62, 76, 147, 154, 163, 170, 171, 173, 199, 369, 375, 392
math symbols, 19, 20, 63, 131, 177, 182, 240, 249, 294, 311, 501-513
alphabets, 197
and delimiters, $24,166,168$
bold, 197-199, 301, 312
building new, 183, 192-195, 372
classification of, 188-189, 195
declaring types of, 195
end of proof, 113, 374
in text, 365
large, 227-229
negated, 194-195
shorthand commands for, 364
side-setting, 194-195
sizes of, 199
spacing of, 187-192
stacking, 192-193
stretchable, 178-180
suppressing, 131
math units, see mu
math.tex (sample file), 17-19
mathb.tex (sample file), 19-22
\backslash mathbb (\mathbb{X}), 181, 197, 512
\mathbf (math font weight com.), 184, 196, 196, 197, 512
\mathbin (binary-op. com.), 195
\mathcal (\mathcal{X}), 185, 197, 512
and Euler Script, 301
Mathematical Reviews, 159
\mathfrak (\mathfrak{X}), 180, 197, 301, 302, 512
\backslash mathit (math font shape com.), 196, 196, 512
\mathnormal (math font shape com.), 196, 196, 512
\mathrel (binary-rel. def. com.), 195
\mathring (̊ㅜ math accent), 177, 512
\mathrm (math font shape com.), 196, 512
mathscr (opt. of eucal pack.), 301, 386, 390, 512
\backslash mathscr (X math font shape com.), 301, 512, 512
\mathsf (math font shape com.), 196, 196, 512
\backslash mathstrut (spacing com.), 114, 200
MathTıme, 545
installing, 545
mathtime (pack.), 545
mathtime.dtx (PSNFSS distr. file), 545
mathtime.ins (PSNFSS distr. file), 545
mathtime.sty (PSNFSS distr. file), 545
mathtools (pack.), 206
\mathtt (math font shape com.), 196, 196, 512
\mathversion, 198
matrices, 25-26, 232-238
in inline math environments, 235
matrix (subsid. math env.), 25-26, 208, 210, 231, 232-238
variants, 234-235
$\backslash \max$ (max math op.), 172, 510
MaxMatrixCols (counter), 233
\mbox (box com.), xxvi, 107
McLean, Ruari, 553, 559
McPherson, Kent, 268
\mdseries (font weight com. dec.), 90, 93, 516
\measuredangle (\measuredangle math sym.), 508
measurements, of text boxes, 405, 405 commands for, 406
medium (font weight), 89, 90, 93, 516
\medskip (spacing com.), 104
\medskipamount (length com.), 377, 406
\medspace (spacing com.), 190, 513, 520
messages
error, see error messages
warning, see warning messages
Metafont, 539
metrics, font, see font metrics
\mho (گ math sym.), 508
Microsoft
typography web page, 546
Vista, 555
Windows, see also PCs, 446, 554
\mid (| binary rel.), 170, 181, 189, 190, 503
midpoint (• text sym.), 81,518
MiKTeX (Windows LATEX front end), xxvi, 326, 490-491, 494
discussion groups, 542
millimeter (mm abs. unit), 403
$\backslash \min (\min$ math op.), 172, 299, 510
minipage (text box env.), 107, 109, 112, 383, 384
displaying footnotes in, 112
minus (-), $9,22,63,76,157,188,191,192$, 196, 216-218
as binary operation, 506
mirrors, of CTAN, 540
MISC (bibl. entry type), 425, 436
Mittelbach, Frank, xxxiii, 101, 523, 524, 558, 559
mixing list text environments, 121
mm (millimeter abs. unit), 403
\mod (mod math op.), 173, 174
\models (\models binary rel.), 503
modes
interactive, 113, 376-378, 491, 534-535
quiet, 534
typographic
math, see also inline and displayed math environments, 7, 62, 76, 147, 154, $163,170,171,173,199,369,375,392$
text, 7, 62, 63, 154, 181, 369, 375, 392
modifier keys, 62, 63
modifiers, in \index commands, 454
combining, 455
modifying environments, 380-383
monospaced fonts, 88
\month (time com.), 80
month (BiBTEX database field), 425, 436
Moore, Ross, xxvii, 242, 558
movable arguments of commands, 74, 475
\mp (干 math op.), 506
mpfootnote (counter), 399
mrabbrev.bib (BiBTEX database file), 436
mrnumber (bibl. com.), 425
\mspace (spacing com.), 190, 190, 513
mtbold (opt. of mathtime pack.), 545
mtfonts.fdd (PSNFSS distr. file), 545
$\backslash \mathrm{mu}$ (μ Greek char.), 502
mu (math unit, rel.), 190, 190, 513
multicol (pack.), 101, 307, 313
multicols (disp. text env.), 101, 523
\multicolumn (table com.), 137, 138, 137-139
multicolumn text
in documents, 101, 313, 523
in tables, 137-139
multiline
boxes, 107
formulas, 30-32, 207-243
Visual Guide to, 207, 208
aligning, 217-218
splitting, 212-214
limits, 176
math environments, 333
adjusting columns in, 209, 210, 231-239
aligning, 209, 210
marginal comments in, 112
page breaks in, 242-243
subscripts and superscripts, 176
table entries, 137, 138
\backslash multimap (- math arrow), 507
multipage tables, 313
multiple
arguments
in user-defined commands, 370, 371
authors
in bibliographies, 426
in documents, 46, 281, 304
bibliographies in a document, 267
captions, 259
citations, 264
documents, cross-referencing among, 313
files, documents composed of, 476-479
indexes, 463-464
spaces, $19,64,71$
tables of contents, 474
multiplication, 23, 158, 161
multline (disp. math env.), 208, 210, 212-214 indentation of lines in, 213 rules for, 213
multline* (disp. math env.), 213-214 indentation of lines in, 213
\multlinegap (length com.), 213
myams.tpl, 294-297
myheadings (page style), 268

N

n-th root, 27, 162
\backslash nabla (∇ math sym.), 508
namelimits (opt. of amsmath pack.), 299
names
base (of files), 531
for abstracts, 251
for proclamations, 125, 128
of authors
in articles, 276, 296, 304
in bibliographies, 426
in running heads, 276
of commands, $68,69,386$
of counters, 128
of files, 44
with \graphicspath command, 479
of fonts
LATEX 2.09, 313
PSNFSS (Berry scheme), 544
redefinable, 267, 322, 323, 363, 375, 548
tagging equations with, 29, 201-204, 211, 213, 215, 218, 230, 231
naming rule, see source files, naming of
\natural (\downarrow math sym.), 508
\backslash ncong ($\not \approx$ neg. binary rel.), 505
\backslash ne (\neq neg. binary rel.), 194, 505
\nearrow (/ math arrow), 507
\backslash NeedsTeXFormat (preamble com.), 86, 250, 386, 532
\backslash neg (\neg math sym.), 508
negated math symbols, 194-195, 505
\negmedspace (spacing com.), 190, 513, 520
\negthickspace (spacing com.), 190, 513, 520
\negthinspace (spacing com.), 182, 190, 190, 513, 520
\backslash neq (\neq neg. binary rel.), 505
nesting
of comment environments, 86
of list text environments, 121
New Font Selection Scheme, see NFSS and PSNFSS
\newcommand (user-defined com.), 74, 364-380
defining arguments with, 370
name already in use, 376
optional arguments, 374
\newcommand* (user-defined com.), 373
\newcounter (user-defined counter com.), 400, 404
optional argument of, $\mathbf{4 0 0}$
\newenvironment (user-defined env.), 380-383
\newenvironment* (user-defined env.), 385
\newlabel (aux. file com.), 531
newlattice (pack.), 250, 386, 387
newlattice.sty (sample file), 311, 379, 383, 386-392
\newlength (length-command def. com.), 404
\newline (line breaking com.), see also $\backslash \backslash, 15$
\newline (line-breaking com.), 97, 98
\backslash newpage (page breaking com.), 15, 100, 101, 261
\newtheorem (procl. com.), 37, 125, 127, 129, 131, 294, 326, 402
optional arguments of, 127, 128
syntax of, 128
\newtheorem* (procl. com.), 129, 382
\newtheoremstyle (procl. com.), 131
\backslash nexists (\nexists math sym.), 508
NFSS (New Font Selection Scheme), 523, 524
documentation for, 553
low-level font commands, 552
nfssfont (pack.), 311
nfssfont. tex (EATEX distr. file), 78, 311
\NG (Eng Eur. char.), 519
\ng (eng Eur. char.), 519
\backslash ngeq ($¥$ neg. binary rel.), 505
\backslash ngeqq ($\not \equiv$ neg. binary rel.), 505
\ngeqslant (\neq neg. binary rel.), 505
\backslash ngtr (\ngtr neg. binary rel.), 505
\backslash ni (\ni binary rel.), 503
\backslash nLeftarrow (ψ math arrow), 507
\nleftarrow (\leftarrow math arrow), 507
\nLeftrightarrow (\nLeftarrow math arrow), 507
\nleftrightarrow (\leftrightarrow math arrow), 507
\backslash nleq ($\not \subset$ neg. binary rel.), 505
\backslash nleqq ($\not \equiv$ neg. binary rel.), 505
\nleqslant (\neq neg. binary rel.), 505
\nless ($<$ neg. binary rel.), 505
\backslash nmid (\nmid neg. binary rel.), 194, 505
noamsfonts (doc. class opt.), 300
\nobreakdash (hyph. prev. com.), 83
\nobreakspace (spacing com.), 76
\nocite (bibl. com.), 439, 441
\nocite* (bibl. com.), 439
\nofiles (preamble com.), 486
and auxiliary files, 486, 531
\noindent (indentation-suppression com.), 99, 484
nointlimits (opt. of amsmath pack.), 299
\nolimits (limit-control com.), 161, 172, 174, 182
\nolinebreak (linebreak-suppression com.), 99
nomath (doc. class opt.), 300
nonamelimits (opt. of amsmath pack.), 299
nonbreakable spaces (\sim tie), 11, 28, 63, 66, 75, 76, 99, 520
absorb spaces, 76
in BIBTEX databases, 427
with cross-references, 257
\nonfrenchspacing (spacing com.), 67
\nopagebreak (page break suppression com.), 100
normal
document font family, 89
font shape
command declarations for, $90,90,123$, 516, 545
commands for, $\mathbf{9 0}, 90,516,545$
math commands for, 163, 196, 196, 512
\normalfont (font shape com. dec.), 90, 90, $123,163,516,545$
\normalsize (font size com.), 93, 93, 517
nosumlimits (opt. of amsmath pack.), 299
\not (math com.), 194
\notag, 30, 31, 211, 213, 215, 218, 231
notation (text env.), 327
notations, see proclamations
notcite (opt. of showkeys pack.), 257
note (beamer doc. class opt.), 355
\note (beamer com.), 355
note (BIBTEX database field), 425
note1.tex (sample file), 9-11
note1b.tex (sample file), 12-13
note2.tex (sample file), 13-15
notes, in presentations, 355, 356
noteslug.tex (sample file), 13
\notin (\notin neg. binary rel.), 194, 505
notitlepage (doc. class opt.), 299, 307, 468
Nowacki, Janusz M., 525
\nparallel (ł neg. binary rel.), 505
\nprec (\nprec neg. binary rel.), 505
\backslash npreceq (\npreceq neg. binary rel.), 505
\backslash nRightarrow (\nRightarrow math arrow), 507
\nrightarrow (\rightarrow math arrow), 507
\nshortmid (\not neg. binary rel.), 505
\nshortparallel (\not neg. binary rel.), 505
\nsim (\nsim neg. binary rel.), 505
\nsubseteq (\nsubseteq neg. binary rel.), 181, 505
\backslash nsubseteqq (\neq neg. binary rel.), 505
\backslash nsucc (\nsucc neg. binary rel.), 505
\backslash nsucceq (\nsucceq neg. binary rel.), 505
\backslash nsupseteq (\nsupseteq neg. binary rel.), 505
\backslash nsupseteqq (\nsupseteq neg. binary rel.), 505

NTG (Dutch TEX user group, 541
\ntriangleleft (\nless neg. binary rel.), 505
\ntrianglelefteq ($\not \subset$ neg. binary rel.), 505
\ntriangleright (\downarrow neg. binary rel.), 505
\ntrianglerighteq ($\$$ neg. binary rel.), 505
\nu (ν Greek char.), 502
number (BIBTEX database field), 424, 425
numbered lists, see enumerate
numbering
automatic, $28,30,37,46,119,125,231$, 252
of appendices, 255, 467
of equations, 27-29, 55, 156-157, 201, 211, 213, 215
groups, 218-219
in chapters of books, 467
in multiline math environments, 215
is relative, 201, 203
of subsidiary math environments, 230, 231
suppressing, $30,31,157,201,211,213$, 215, 218, 231
variations, 203, 218
within sections, 156,250
within split subsid. math align. env., 230-231
of figures, 258
of pages, style of, 401
of proclamations, 125, 127-128
consecutively, 127-128
suppressing, 129, 130, 382
within sections, 127
of structural units, $400,466,536$
controlling, 403
in books, 466
sections, 252
suppressing, 46, 253, 467
of tables, 258
renumbering, 28, 536
with counters, 398-406
resetting, 399, 402
\numberline (toc file com.), 475
numbers
counter styles for, 123, 401, 400-401, 411
for equations, placement of, 298, 307
for proclamations, position of, 131
in bibliographic fields, 424
in lists, 119
keys, 62
line
in error messages, $6,9,153,154$
in warning messages, 12
page
referencing, 258
style of, 401
ranges, $\mathbf{1 4}, \mathbf{7 5}, 81$
in BibTEX databases, 424, 427
in index entries, 454
real, in length commands, 403
stored by $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}, 80$
stored in
counters, 399
registers, 377
version, 532
\numberwithin, 156, 250, 466
numeric counter style (\arabic), 401, 401, 411
\backslash nVDash (\nVdash neg. binary rel.), 505
\backslash nVdash (\nVdash neg. binary rel.), 505
\backslash nvDash ($\not \models$ neg. binary rel.), 505
\backslash nvdash (\vdash neg. binary rel.), 505
\nwarrow ($\$ math arrow), 507

0

O'Sean, Arlene Ann, 217, 553, 560
O, slashed (et,\emptyset),81,515\)Oberdiek,Heiko,319obtainingfilesfromtheInternet,537-541PostScriptfonts,546samplefilesforthisbook,4,541theAMSpackagesandAMSFonts,540octothorp(\#),77,81,518\oddsidemargin(lengthcom.),270lodot$(\odot$mathop.),506\OEethel(E),81,515\oeethel(œ),81,515ogonek(Eur.accent),519loint(\ointlargemathop.),161,175,511old-styledigits,62\oldstylenums(old-styledigitscom.),62\backslashOmega(ΩGreekchar.),502\omega(ωGreekchar.),502\ominus(\ominusmathop.),506onecolumn(doc.classopt.),299,307\onecolumn(single-columncom.),101oneside(doc.classopt.),299,307,468\only(beamercom.),333-335,337-339,343\onslide(beamercom.),333,335,337-339,342,343openany(doc.classopt.),468openbib(doc.classopt.),308,308openright(doc.classopt.),468operatingsystems,seeMac,PC,orUNIXoperationsarithmetical,22-23,157-159binary,seebinaryoperationsoperators,math,$22,24,26,157,172,175$,170-176,371,506,510declaring,173large,25,26,161,169,175,174-176,299,511sizingofmathdelimiterswith,169withlimits,$25,27,161,171,172,174$,175,299,510,511defining,173,195,196withoutlimitsdefining,173,195,196,198,250,301\oplus(\oplusmathop.),506optionalarguments,$15,71,98,100,112,113,115$,$125,162,179,233,242,250$multiple,70of$\backslash\backslash,\mathbf{15},\mathbf{98},242$ofcommands,$56,120,122,123,127$,200,201,264,266,276-279,351,$400,402,407,409,410,414,475$ofenvironments,$125,128,132,135$,$229,243,260,384,486$ofsectioningcommands,253,473ofstructuralcommands,255,466oftopmattercommands,273-281,331ofuser-definedcommands,374ofuser-definedenvironments,380,382,384usesquarebrackets([]),15,27,69-70,$123,132,135,285$bibliographicfields,425,428-436hyphens,$13,82,82,96$optionsofdocumentclasses,seedocumentclassoptionsofpackages,seepackageoptionsorganization($\mathrm{BIBT}_{\mathrm{E}}\mathrm{X}$databasefield),425,431organizationoffiles,476-479orientationofpages,documentclassoptionsfor,307orthogonalityoffontcommands,94\oslash(\oslashmathop.),506OT1fontencoding,544\otimes(\otimesmathop.),506out(hyperrefbookmarksfile),321\overbrace(horizontalbracecom.),178,183withasuperscript,178overdot(\cdottextaccent),79,516\overfullrule(lengthcom.),96overlappingbraces,72overlays,seealsounderpresentationscommandsfor,337layering,334\overleftarrow(\overleftarrow{x}matharrow),179loverleftrightarrow(\overleftrightarrow{x}matharrow),179\overline(\bar{x}mathlinesym.),177,179,185overprint(beamerenv.),359\overrightarrow(\vec{x}matharrow),179\overset(symbol-buildingcom.),183,192,372creatingbinaryoperationsandrelationswith,193\owns(Эbinaryrel.),503P$\backslash\mathrm{P}$(【pilcroworparagraph)mathsymbol,508textsymbol,81,518packageoptions,seealsospecificpackages,249,257,298-299,301,320-322,386,512,545,546,548arepasseddownfromdocumentclasses,250handledelectively,313preventingloadingof,300packages,36,249,311,522,524-526accents,178afterpage,312alltt,147,311,534amsbsy,301,302,528amscd,301amsfonts,301-302,528amsgen,301,302amsmidx,302amsmath,xxvi,53,231,299,300,301,302,403,524,525,528,533amsopn,301,302amssymb,37,180,294,300,301,374,528amstext,301,302amsthm,302,525amsxtra,176,177,300,301apalike,437array,312automaticloadingof,53,349,528,529babel,312,547-548backref,320biblatex,447bm,312booktabs,140calc,312,403,406commandsin,386cyrillic,312datesof,533dcolumn,136,313delarray,313distribution,AMS,271,300-302,325,380,417,436,437,521,528,553documentationfor,113,261,312,313,$359,380,545,546,553$enumerate,123,313,382,387eucal,301,302,386,512options,301,390,512eufrak,302exscale,301,311fancyhdr,270,537,540fileerr,313fontenc,545,547,548fontsmpl,313ftnright,313geometry,270graphics,312graphicx,37,39,250,259-260,300,523,552hhline,140,313hyperref,320-323inrequireddirectory,312intoolsdirectory,312-313inunpackeddirectory,311indentfirst,313inputenc,547interdependenciesof,271latexsym,37,180,249,294,300,311layout,268,313loadingwith\usepackage,70,249multiple,250longtable,313lucidabr,546makeglos,464makeidx,311,450,478mathtime,545mathtools,206multicol,101,307,313newlattice,250,386,387nfssfont,311obtainingtheAMSpackagesandAMSFonts,540options,seepackageoptionsparalist,123psnfss,312rawfonts,313setspace,99showidx,311,453showkeys,257,313somedefs,313sourcefiles,250,310,437,540tabularx,313theorem,313times,544tools,312trace,313updatestoAMSFontsandamsmath,533upref,300,301varioref,258,313verbatim,$86,87,147,313,387$versionsof,524,525,532-534xcolor,325,348xr,258,313xspace,313,368-369xy-pic,242page(counter),399,399pagebackref(opt.ofhyperrefpack.),320,321undefined

 (page breaking com.), 100, 484, 486

optional arguments of, 100
\pagename (redef. name), 376
\pagenumbering (page-number style com.), 401
\pageref (cross-ref. com.), 28, 29, 31, 202, 255, 258, 267, 322, 484
\pageref* (hyperref cross-ref. com.), 322 pages
breaking, 15, 100-101, 261
in align environment, 242
in cases subsidiary environment, 242
in displayed math environments,

242-243

in gather environment, 242
in multiline math environments, 243
preventing, 242
components of, 268
headers, see running heads
layout of, 268-270, 313
for amsart document class, 269
numbering, style of, 401
odd, starting chapters on, 468
orientation of, document class options for, 307
referencing, 202, 258
with varioref package, 313
size changing with \enlargethispage, 101, 484, 487
styles of, 268-270
title, 535
document class options for, 249, 299, 300, 307
of articles, 37, 249, 251
of books, 467, 469
of presentations, 55
pages (BiBTEX database field), 425
page ranges in, 427
\pagestyle (set page style), 268
pagination, 484-486
paper size, document class options for, 298, 306
\par (paragraph breaking com.), 64, 65, 73, 90, 273
\par (paragraph-breaking com.), 95, 118, 124
in error messages, 99
\paragraph (struct. com.), 252, 466
paragraph (counter), 399
paragraph boxes, 110-112
paragraph text symbol, see $\backslash \mathrm{P}$
\paragraph* (struct. com.), 253
\paragraphname (hyperref redef. name), 323
paragraphs, 64, 99-100
breaking into lines, $12,96,97,530$
breaking lines in, 82
hanging indents, 99
horizontal alignment of, 124
indentation of first lines, 99, 103, 313, 404
interline spacing of, 23
terminating
with blank lines, $11, \mathbf{6 4}, 99,118,144$
with \backslash par command, 64, 65, 73, 90, 95, 99, 124
vertical spacing between, $124,404,407$, 413, 481
paralist (pack.), 123
\parallel (|| binary rel.), 503
\backslash parbox (box com.), 107, 109, 110, 111, 138, 405
in tabular environments, 111
parentequation, 401
parentheses (()), 8, 62
as math delimiters, 24, 26, 166, 167, 184, 217, 509
in index entries, 455
suppressing the use of in tags, 202
\parindent (length com.), 404, 414
\backslash parsep (length com.), 407, 408, 413, 414
\parskip (length com.), 404, 407, 408, 414, 481
\part (struct. com.), 253, 304, 350, 466
part (counter), 399
\partial (∂ math sym.), 508
\partname (redef. name), 376
and hyperref package, 323
\backslash partopsep (length com.), 407
parts
in books, 466
in presentations, 354
Patashnik, Oren, 421, 446, 559
pathnames, on Mac, PC, and UNIX systems, 479
\pause (beamer com.), 333, 333, 334, 337
pc (point abs. unit), 403
pcr (PSNFSS font name), 544
PCs, xxvi, 3, 4, 9, 479, 522
FTP clients, 538
$\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ front end, 3, 326, 489
IATEX implementations, 490-494
line ending characters, 9
WinEdt $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ front end, xxvi, 9, 11, 53, 442, 461, 490, 491, 492

PDF (Portable Document Format), 318-319, 486 files
bibliographic citations in, 321
bookmarks in, 321
creating, 319
external hyperlinks in, 322-323
for graphics, 39, 259, 326
for legacy documents, 319
for presentations, 53-58, 325-359
hyperlinks in, 319-323
JavaScript in, 318
putting on the Internet, 319
size of, 318
suppressing hyperlinks in, 322
typeset, 5, 318, 326
viewing in Web browsers, 318
fonts
partial downloading of, 318
proprietary, 318
pdftex (opt. of hyperref pack.), 320
percent (\%)
as comment character, $6,10,19,21,61$,
85-86, 141, 294, 458
in BibTEX databases, 86, 443
as text symbol, $9,77,81,518$
in e-mail addresses, 278
periods (.), 9, 62, 66-67
and initials, 67
and italic correction, 92
and spacing rules, 66-67
end of sentences, 66
following capital letters, 67
in abbreviations, 66
in bibliographies, 66
in BibTEX databases, 426
terminating sentences with, 64-67
\perp (\perp binary rel.), 503
personal computer, see computer, Mac, or PC
Personal TEX, Inc., 545
personalized templates
for AMS document classes, 294-297
\phantom (spacing com.), 102-103, 191-192, 223, 406
PHDTHESIS (bibl. entry type), 425, 433-434
\backslash Phi (Φ Greek char.), 502
\phi (ϕ Greek char.), 502
phv (PSNFSS font name), 544
$\backslash \mathrm{Pi}$ (Π Greek char.), 502
\pi (π Greek char.), 502
pica (pc abs. unit), 403
picture (drawing env.), 259, 551
portability of, 552
pilcrow (\mathbb{T} text sym.), 81, 518
\backslash pitchfork (内 binary rel.), 504
placement
of commas in formulas, 155
of equation numbers, 298, 307
of equations, 298, 307
of figures, $\mathbf{2 6 0}, 484,486$
of \index commands, 458, 486
of index in document, 450, 461
of \label commands, 486
of limits, 299
of roots, 162
of tables, 484, 486
of text boxes, 115
plain
BibTEX style, 421
page style, 268
theorem style, 129, 129-131
Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}, 552$
plain text, 9
plain.bst (BibTEX style file), 421
plain.tex (Plain TEX source file), 528
platform independence
of graphics, 325
of source files, 3 , 9
platforms, see under Mac, PC, and UNIX
plus (+), 22, 188, 191, 192, 216-218
as binary operation, 506
plus and minus rule, 188, 191, 192
and subformulas, 216
in multline environments, 213
\pm (\pm math op.), 506
pmatrix (subsid. math env.), 25-26, 235
$\backslash \mathrm{pmb}$ (poor man's bold font com.), 198-199, 301
$\backslash \operatorname{pmod}((\bmod)$ math op.), 24, 173, 174
\pod (() math op.), 24, 173, 174
poetry, typing, 144-145
point (pt abs. unit), 12, 15, 54, 89, 93, 95, 96, 105, 107, 110, 111, 308, 403
poor man's bold, 198-199, 301
portability
of bibliographic databases, 426, 428
of illustrations, 552
of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ files, 9
of prohibited characters, 64
of T_{E} files, 9
Portable Document Format, see under PDF
Portable Graphics Format, 325
position, of proclamation numbers, 131
PostScript (PS), 317
documents on the Internet, 317
files
converting to PDF, 319
including fonts in, 317
putting on the Internet, 319
size of, 317, 319
fonts, 317, 523, 543-546

AMSFonts, 300, 301, 524, 525, 533
Computer Modern, 523, 525, 543
European Modern, 524
obtaining, 546
using with $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}, 312,545$
PostScript New Font Selection Scheme, see PSNFSS
£
math symbol ($£$), 508
pound sign or sterling (£), 519
$\backslash \operatorname{Pr}(\operatorname{Pr}$ math op.), 172, 510
preamble, 35-37, 248-251
commands in, $13,35,53-55,70,85,86$, $99,125,127,129,131,156,173,196$, 249, 250, 294, 300, 320, 326-327, 366, 382, 386, 402, 463, 478, 486, 531, 532
customizing, in template files, 44, 294
defining counters in, 400
proclamations defined in, 250
user-defined commands in, 250, 366
\backslash prec (\prec binary rel.), 503
\precapprox (${ }^{\text {binary rel.), }} 504$
\preccurlyeq (\preccurlyeq binary rel.), 504
\backslash preceq (\preceq binary rel.), 503
\backslash precnapprox ($\not \approx$ neg. binary rel.), 505
\backslash precneqq (\supsetneqq neg. binary rel.), 505
\precnsim (\precsim neg. binary rel.), 505
\backslash precsim (\precsim binary rel.), 504
preparation
final, of books, 482-487
of illustrations, 483
presentations, 53, 325
abstracts in, 53-55
babybeamer1, 334, 333-335
babybeamer2, 333
babybeamer3, 338
babybeamer4, 340
babybeamer5, 341
babybeamer6, 341
babybeamer7, 346, 345-347
babybeamer8, 348
babybeamer9, 351
babybeamer $10,359,360$
beamerstructure1, 352
beamerstructure2, 354, 354
body of, 327
columns in, 347-348
commands for, 53, 55, 349, 351, 357
optional arguments of, 351
cross-referencing within, 328
equations in, 328
file formats
PDF, 326
flexibility in, 358
frames in, 358
hyperlinks in, 343-347, 358
in color, 348-350
lists in, 339-341
navigation symbols, 354
notes in, 355, 356
overlays in, 333, 333-343
commands for, 333, 335, 337
examples of, 335-337
layering, 334, 335
specifications, 337, 341
syntax of, 337-339
parts in, 354
planning, 358
preamble of, 53-55, 326-327
quickbeamer1, 328, 329, 330, 333
quickbeamer2, 331, 332, 333
sectioning of, 55, 328, 331
sidebars, 331
sidebars in, 343, 350
slides, 333
structure of, 350
tables of contents in, 351, 358
themes for, 328, 331, 356, 356, 357
color options, 357
font options, 357
theorems in, 358
top matter of, 53-55, 326-327, 331
with beamer document class, 325-359
with FoilTEX, 53
preventing
case changes in bibliographic entries, 427
hyphenation, 83-84, 107
indentation of paragraphs, 99
line breaks, 99, 107
page breaks, 98, 100, 242
removal
of horizontal space, 103
of vertical space, 105
spaces following environments, 383
\prime (${ }^{\prime}$ math sym.), 508
prime (${ }^{\prime}$), 23, 159, 194, 508
primitive commands, 377,528
printers
drivers for, 526, 530
specifying for hyperref package, 320
DVI drivers for, 312, 539
\backslash Printindex (index com. for multiple indexes), 464
\backslash printindex (index com.), 450, 461
printing
typeset (DVI) files, 530
typeset (PDF) files, 530
proc (doc. class), 529
proc-1 (doc. class), 272, 376

PROCEEDINGS (bibl. entry type), 425, 432-433, 436
proceedings, conference, in $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database files, 424
processed
bibliography files, see bbl
index files, see ind
processing
bibliographies, 437-446
indexes, 459-461
proclamations, 37, 46, 117, 124-131, 407
commands for
\newtheorem (procl. com.), 37, 125, 127, 129, 131, 294, 402
\newtheorem* (procl. com.), 129, 382
\newtheoremstyle, 131
\theoremstyle (procl. com.), 129-131
\theoremstyle* (procl. com.), 129-131
counters for, 399
defining, $37,46, \mathbf{1 2 5}, 127,128,131,294$, 382, 402
in preamble, 250
with theorem package, 313
environments for
theorem, $37,46,52,54,125,128,343$, 384
invoking, 37, 46, 52, 125, 128, 343, 384
lines following, 118
lists in, 126
logical design using, 535
names of, 55, 128
numbering of
consecutively, 127-128
within sections, 127
position of numbers, 131
styles of, 129-131, 524
definition, 129, 129-130
plain, 129, 129-130
remark, 129, 129-130
unnumbered, 129, 130, 382
\prod (\prod large math op.), 175, 511
productivity tools, $\mathbf{5}, 494,498$, see also synchronization, block comment, jump to a line
products, 26, 27, 174
products.eps (sample illus. file), 39
products.pdf (sample illus. file), 39, 54, 327
programming, in $\mathrm{T}_{\mathrm{E}} \mathrm{X}, 553$
programs, typing, 141-143, 145-147
prohibited keys, 9, 63
\projlim (proj lim math op.), 172, 510
prompts, 534-535
 * (interactive), 113, 376-378, 534
**, 534
?, 20, 48, 491, 534
file name, 534
responding to, $20,48, \mathbf{5 3 4}-535$
proof (text env.), 39, 117, 131-133, 302, 327
changing q.e.d. symbol, 374
lines following, 118
lists in, 131
optional arguments of, 132
placement of q.e.d. symbol, 132
\proofname (redef. name), 376
proofs, 131-133
proportional fonts, 88
propositions, see proclamations
\backslash propto (\propto binary rel.), 503
\backslash protect (protect fragile commands), 74, 252, 253, 466, 475
protecting
capitalization in bibliographic entries, 427
fragile commands, 74, 252, 253, 466, 475
protocols
File Transfer, see FTP
Hypertext Transfer, see HTTP
\providecommand (user-defined com.), 373, 375, 378
\providecommand* (user-defined com.), 373
\ProvidesPackage (pack. com.), 534
providing commands, 375
PS, see PostScript
ps2pdf (opt. of hyperref pack.), 320
psamsfonts
amsfonts package option, 301
document class option, 300
psfonts.ins (PSNFSS distr. file), 544
\backslash Psi (Ψ Greek char.), 502
\backslash psi (ψ Greek char.), 502
PSNFSS (PostScript New Font Selection Scheme), 544, 545
distribution, 540, 544-545
font names (Berry scheme), 544
psnfss (LATEX distr. directory), 311
psnfss (pack.), 312
pt (point abs. unit), 12, 15, 54, 89, 93, 95, 96, $105,107,110,111,308,403$
ptm (PSNFSS font name), 544
publisher (BIBTEX database field), 424, 425
publishers, preparing manuscripts for, 465
punctuation
in BiBTEX databases, 423-428, 445-446
marks, $9,14,62,75-76,81,156,368,515$, 518

Q

q.e.d. symbol, 132, 374
\qedhere (proof com.), 133
\qedsymbol (\square math sym.), 131, 374
suppressing, 132
\qquad (spacing com.), 27, 102, 105, 190, 190, 224, 513, 520
\quad (spacing com.), 24, 27, 102, 105, 154, 190, 190, 225, 513, 520
question marks (?), 9, 62
Spanish (i), 81, 515, 518
terminating sentences with, 64-67
quickbeamer.pdf (sample file), 326
quickbeamer.tex (sample file), 326-328
quickbeamer1.pdf (sample file), 328
quickbeamer1.tex (sample file), 328
quickbeamer2.pdf (sample file), 331
quickbeamer2.tex (sample file), 331
quiet mode, 534
quotation (disp. text env.), 144, 407
quotation marks, $9,63,75,81$
double quote key, $9,62,63,75$
in BibTEX database fields, 424, 445, 446
in BibTEX entries, 436
in \index commands, 457
European, 519
single quote key, $9,23,62,75$
typing, 11
quotations, typing, 143-144
quote (disp. text env.), 143, 407
\quotedblbase (Eur. quot. mark), 519
quoting, special characters in \index commands, 457

R

\r (${ }^{\circ}$ ring text accent), 79, 516
\raggedleft (align. command dec.), 124
\backslash raggedright (align. command dec.), 124
Rahtz, Sebastian, 259, 319, 523, 542, 558
\backslash raisebox (box com.), 115
ranges, numeric, $\mathbf{1 4}, \mathbf{7 5}, 81,518$
in BibTEX databases, 424, 427
in index entries, 454
\rangle (\rangle math delimiter), $167,168,509$
rawfonts (pack.), 313
\rbrace (\} math delimiter), 167, 509
\rbrack (] math delimiter), 167, 509
\rceil (\rceil math delimiter), 167, 509
$\backslash \operatorname{Re}$ (\Re math sym.), 508
read-only, making templates, 297
readability
of documents, 93,358
of source files, $19,22,65,135,154,166$, 363-367, 379, 415
Reader, Adobe Acrobat, see under Adobe Reader
real numbers, in length commands, 403
redefinable names, $322,323,363,375,376,548$
redefining commands, 374-375
\ref (cross-ref. com.), 28, 29, 31, 123, 156, $202,215,255,255,258,301,313$, 322, 384
\ref*(hyperref cross-ref. com.), 322
references
bibliographic, 29, 40-41, 48, 66, 261-267, 328, 375, 407, 437, 442
citing, 29, 47, 264, 441
citing with $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}, 439$
including without citing, 439, 441
defining, 28, 29, 31, 50, 156, 215, 231, 252, 255, 328
symbolic, showing in margins, 257, 313
to equations, 28, 29, 31, 156, 202, 203, 215, 219, 255, 256, 263, 328
to pages, $28,29,31,202,255,258,322$, 484
and varioref package, 313
to sections, 28, 29, 31, 123, 156, 202, 215, 255, 258, 301, 313, 322, 384
referencing, see cross-referencing or symbolic referencing
\backslash refname (redef. name), 376
\refstepcounter (cross-ref. counter incr. com.), 402
registered trademark (\circledR text sym.), 81, 518
registers, 377
relations, binary, see binary relations relative
numbering of equations, 29, 201, 203
spaces, 105
units, 105, 107, 111, 403
\relax (do nothing com.), 385
release dates, of $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}, 86,251,532$
remark (procl. style), 129, 129-131
}_{\mathrm{E}} \mathrm{X}\) database files, 434-435
reqno
amsmath package option, 302
document class option, 249, 298, 307
required
arguments, 111, 112, 179, 194, 272, 273, 535
multiple, 19, 70, 137, 192, 194, 268, 311, 379, 404-406
of commands, 19, 69, 137, 192, 194, $257,268,280,404,473,478,516$ of environments, $\mathbf{6 9}, 135,136,224$, 226, 236, 237, 263-264, 266, 309, 383-385, 476
use braces ($\}$), $8,14,19,69,70$, 530
bibliographic fields, 425, 426, 428-436
required (${ }^{-} T_{\mathrm{E}} \mathrm{X}$ distr. directory), 311, 540
packages in, 312
\backslash RequirePackage (pack. com.), 386, 387
research support (\backslash thanks top matter com.), 44, 87, 279, 281, 296, 304
resetting counters, 400, 402
resolution, of Type 1 fonts, 543
Return key, 9, 11, 21, 48-51, 63, 153, 491, 534
\rfloor (」math delimiter), 167, 509
\rhd (\triangleright math op.), 506
\rho (ρ Greek char.), 502
\backslash right (math delim.), 167-168, 170, 184, 235
blank, 168, 182
must be balanced, 168, 217
right double quote (")
text symbol, 75, 81, 518
typing, 11
right justification of text, $8,14,68$
right single quote (')
key, 9, 11, 62, 75
text symbol, 75, 519
\right) () math delimiter), 24, 26, 166, $168,184,217,235$
\right. (blank math delim.), 168
\right> (> math delimiter), 168
\backslash right] (] math delimiter), 24, 166, 182
\backslash Rightarrow (\Rightarrow math arrow), 507
\rightarrow (\rightarrow math arrow), 507
\rightarrowtail (\rightarrow math arrow), 507
\rightharpoondown (\checkmark math arrow), 507
\rightharpoonup (- math arrow), 507
\rightleftarrows (\rightleftarrows math arrow), 507
\backslash rightleftharpoons (\rightleftharpoons math arrow), 507
\rightmargin (length com.), 407, 408, 411
\rightrightarrows (\rightrightarrows math arrow), 507
\rightsquigarrow (\rightsquigarrow math arrow), 507
\rightthreetimes ($人$ math op.), 506
\right| (| math delimiter), 24, 26, 168, 180, 189, 191
ring (${ }^{\circ}$ text accent), 79, 516
ring $\mathrm{A}(\AA), 81,515$
ring a (å), 81, 515
\risingdotseq (\risingdotseq binary rel.), 504
Ritter, R. M., 553
\rm (obs. $\mathrm{LAT}_{\mathrm{E}} \mathrm{X} 2.09$ font com.), 94
\rmfamily (font shape com. dec.), 90, 123, 516
rmfamily (font shape env.), 123
\backslash Roman (uppercase roman-numeral counter-style com.), 401
roman
document font family, 89, 89, 544
font shape, $28,88,90, \mathbf{1 2 3}, 301,516$ math, $173, \mathbf{1 9 6}, 196$
\backslash roman (lowercase roman-numeral counter-style com.), 123, 401
roots, 27, 161-162
n-th, 27, 162
placement of, 162
square, 27,161
using struts with, 200
Rose, Kristoffer H., 242
row separator (
), 25, 30, 31, 33, 44, 46, $98,124,135,141,142,145,176$, 211, 213, 215, 216, 227, 231, 242, 273-278, 297, 304, 309
Rowley, Chris, xxxiii, 523, 524, 559
\backslash Rrightarrow (\Rightarrow math arrow), 507
\backslash Rsh (Γ math arrow), 507
\rtimes (\rtimes math op.), 506
rubber lengths, 378, 406, 407, 530
\rule (box com.), 113, 114, 140
rules (lines), filling lines with, see also lines (rules), 106, 113
running
BibTEX, 437-446
MakeIndex, 459-461
running heads, 56, 252, 268-270
author's name in, 276
fragile commands in, 74
title in, 274, 297
\rVert (|| math delimiter), 168
\rvert (| math delimiter), 168

S

\S (§)
math symbol, 508
section text symbol, 81, 518
sampart-ref.tex (sample file), 320, 323
sampart.tex (sample file), 125, 129, 131, 230, 266, 272, 273, 285-293, 371, 392, 437, 536
source file, 290-293
typeset, 286-288
sampartb.aux (sample aux. file), 441, 442
sampartb.bbl (sample bibl. file), 441-443
sampartb.bib (sample bibl. file), 437, 437-443
sampartb.blg (sample BibTEX log file), 441, 442
sampartb.tex (sample file), 421, 437, 439-441, 443
sampartu.tex (sample file), 376, 383, 392-398, 535
sample files
amsart.tpl, 294
amsproc.template, 297
babybeamer1.pdf, 333-335
babybeamer2.tex, 334
babybeamer3.tex, 338
babybeamer4.tex, 343
babybeamer5.tex, 341
babybeamer6.tex, 343
babybeamer6block.tex, 343
babybeamer7.tex, 343, 345-347
babybeamer8.tex, 347
babybeamer9.tex, 349
babybeamer10.tex, 359
beamerstructure.tex, 352, 354
bibl.tpl, 47
cleardoublepage.sty, 101
fonttbl.tex, 78, 134
formula.tex, 164-166
gg.tex, 44-48
gg2.tex, 45-46
ggamsart.tpl, 297
inbibl.tpl, 263
intrart.tex, 35-43, 53, 55, 326, 331
typeset, 41-43
intrarti.tex, 450-452, 460, 459-461
intropres.tex, 53, 55, 57-58
legacy-article.tex, 304, 305
letter.tex, 308-310
math.tex, 17-19
mathb.tex, 19-22
myams.tpl, 294-297
newlattice.sty, 311, 379, 383, 386-392
note1.tex, 9-11
note1b.tex, 12-13
note2.tex, 13-15
noteslug.tex, 13
obtaining, 4
of presentations, 54, 326-331
products.eps (illus. file), 39
products.pdf (illus. file), 39, 54, 327
quickbeamer.pdf, 326
quickbeamer.tex, 326-328
quickbeamer1.pdf, 328
quickbeamer1.tex, 328
quickbeamer2.pdf, 331
quickbeamer2.tex, 331
sampart-ref.tex, 320,323
sampart.tex, 125, 129, 131, 230, 266, 272, 273, 285-293, 371, 392, 437, 536
source file, 290-293
typeset, 286-288
sampartb.bib, 437, 437-443
sampartb.tex, 421, 437, 439-441, 443
sampartu.tex, 376, 383, 392-398, 535
sample.cls (doc. class), 10, 11
SymbolTables.pdf, 4, 9, 15, 19
template.bib, 423, 437, 446
topmat.tpl, 282
sample.cls, 11
sample.cls (doc. class), 10
samples
font, 313
of bibliographies, 47, 261-263, 423, 437, 437-438, 446
of command (style) files, 311, 379, 383, 386-398
of indexes, 452, 450-452
samples (folder), 4, 9, 10, 12-15, 18-20, 35, 39, 44, 45, 47, 48, 78, 101, 134, 230, 263, 282, 285, 294, 297, 304, 308, 320, 326-328, 331, 333, 339, 341, 343, 354, 358, 359, 376, 386, 392, 423, 437, 438, 450, 468, 496, 535, 548
creating, 4
sans serif
document font family, 89, 94, 544
font shape, $55,89,90, \mathbf{1 2 3}, \mathbf{1 9 6}, 196$, 512, 516
Helvetica, 89, 544
\sb (math subscript com.), 159
\sc (obs. LATEX 2.09 font com.), 94
scaling graphics, 54
in figures, 259
in FoilTEX, 54
Schöpf, Rainer, 523, 559, 560
Schandl, Bernd, 123
scharfes s (β, SS), 81, 515
Schleyer, Antoinette Tingley, 217, 553, 560
school ($\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database field), 425
Schröder, Martin, 523
scope
delimited by braces, 71-73
of \allowdisplaybreaks commands, 242
of command declarations, 124, 367-368, 382
of commands, 71-73, 90, 139
global and local, 74
setting, with environments, 96, 213
\scriptscriptstyle (math font size com.), 199, 204
\scriptsize (font size com.), 93, 93, 517
\scriptstyle (math font size com.), 199, 204
\scshape (font shape com. dec.), 90, 91, 123, 516
scshape (font shape env.), 123
\searrow (\searrow math arrow), 507
\sec (sec math op.), 172, 510
secnumdepth (counter), 403

\section (struct. com.), 46, 55, 252-255, 331, 350, 467

optional argument of, 253
section (counter), 398, 399
section (§ text sym.), 81, 518

\section* (struct. com.), 46, 253, 467

sectioning
commands, see also structural commands
optional arguments of, 253
provided by amsart doc. class, 254
provided by article doc. class, 254
provided by book doc. classes, 466-467
syntax of, 253
of articles, 46, 252-255
of books, 466-467, 479
of documents, 11, 35-41, 46, 48, 49, $51,52,66,68,164,248,251$, 252-255, 261, 267, 285, 304, 308-310, 406, 437, 442, 449, 459, 466-467, 522, 536
of presentations, $55,328,331$

\sectionname (redef. name)

and hyperref package, 323
sections, numbering of, 252
in books, 466
of equations within, 156, 250
of proclamations within, 127
\see (indexing cross-ref. com.), 457
\seename (redef. name), 376
\selectfont (font selection com.), 95
selecting
files to include, 260, 400, 477, 478, 479, 496
fonts, 88-95
semicolon (;), 9, 62
sentences
terminating, 11, 64-67 with periods, 279
series ($\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database field), 425
series commands, for fonts, see under font commands and font command declarations
serif (font shape), see also under roman, 89, 89
Seroul, Raymond, 553, 560
\setbeamercolor (beamer com.), 350
\setbeamertemplate (beamer com.), 355
\setcounter (counter-setting com.), 74, 233, 399, 402
\setlength (length setting com.), 99, 100, 113, 404
setlength environment, 96, 213
\setminus (\backslash math op.), 506
setspace (pack.), 99
\settodepth (measurement com.), 406
\settoheight (measurement com.), 406
\settowidth (measurement com.), 406
\sffamily (font shape com. dec.), 90, 94, 123, 516
sffamily (font shape env.), 123
SGML (Standard Generalized Markup Language), 523
shape commands, for fonts, see under font commands and font command declarations
\sharp ($\#$ math sym.), 508
short
arguments, of user-defined commands, 373-374
arguments, of user-defined environments, 385
commands, 73, 90, 273, 284
pages, warnings about, 530
shorthand, see under user-defined commands
\shortmid (। binary rel.), 504
\shortparallel (॥ binary rel.), 504
\shoveleft (align. com.), 214
\shoveright (align. com.), 214
\show (command-examination com.), 377, 377, 378, 534
\showhyphens (hyph.-disp. com.), 84
showidx (pack.), 311, 453
showkeys (pack.), 257, 313
options, 257
\showthe (value-examination com.), 113, 377, 378, 534
shrinkable lengths, 56, 101, 102, 377, 406, 407, 413, 530
side-setting, math symbols, 194-195
sidebars, in beamer presentations, 328, 331, 343
\sideset (math com.), 194-195
\backslash Sigma (Σ Greek char.), 502
\sigma (σ Greek char.), 502
\signature (letter com.), 309
\backslash sim (\sim binary rel.), 503
\backslash simeq (\simeq binary rel.), 503
simple alignment, of formulas, 31, 30-31
$\backslash \sin (\sin$ math op.), 26, 170, 172, 196, 510
single
guillemet, 519
quote, 11
keys, $9,23,62,75$
text symbols, 519
single quotation, 519
single-lined boxes, see under boxes
\sinh (sinh math op.), 172, 510
size
of files
PDF, 318
PostScript, 317, 319
of fonts, 55, 89, 93, 93-94, 123, 517
commands for, see under font commands
document class options for, 297, 306
in math, 199
of hyperlinks in PDF files, 322
of math delimiters, 168-170, 184
of paper, document class options for, 298, 306
\sl (obs. $\mathrm{IAT}_{\mathrm{E}} 2.09$ font com.), 94, 95
slanted (font shape), 88, 90, 91, 94, 95, 123, 156, 516
and italic correction, 92
context dependence of, 91
slashed L's and O's (ł, Ł, ø, Ø), 81, 515
slides, see under presentations
slides (obs. doc. class), 303, 529
\slshape (font shape com. dec.), 90, 91, 92, 94, 95, 123, 516
slshape (font shape env.), 123
slugs, 13, 96, 249, 300, 307
\SMALL (font size com.), 93, 93, 517
\backslash Small (font size com.), 93, 93, 517
\small (font size com.), 93, 93, 517
small caps (font shape), $88,90, \mathbf{9 1}, \mathbf{1 2 3}$, 516
for abbreviations and acronyms, 91, 480
\smaller (font size com.), 94
\smallfrown (\sim binary rel.), 504
\smallint (\int math sym.), 508
smallmatrix (subsid. math env.), 235
\smallsetminus (\backslash math op.), 506
\smallskip (spacing com.), 104
\smallsmile (\smile binary rel.), 504
\smash (spacing com.), 115, 201
optional argument of, 201
\smile (` binary rel.), 503
Snow, Wynter, 553, 560
Solaris, see UNIX
solid boxes, 113-114, see also struts
solution (beamer distr. directory), 358
somedefs (pack.), 313
sort keys, 455-456
case sensitivity of, 462
sorting, of index entries, 455-456
source files, $4-5,5,7-8,9,18,35,51,52$, 64, 82, 87, 145, 271, 415, 447, 461, 473, 496, 525
errors in, 19-22, 491, 498, 534
naming of, 4, 44
platform independence of, 3, 9
putting on the Internet, 317-323
disadvantages of, 317
readability of, $19,65,154,166$, 363-367, 379, 415
structure of, see also document
style parameters, see styles, document parameters for
typesetting, 4, 9, 12, 20, 28, 63, 74, 529, 534
white space in, 19
sources, for fonts, 546
\sp (math superscript com.), 159, 183
space bar, $9,11,53,63,325,334$
spaces
at the beginning of a line, 64, 103
at the end of a line, 64, 65, 84
blue, see also tie, unbreakable spaces, nonbreakable spaces, 76
consist of glue, 530
expanding, 106
filling lines with, 106
in arguments of commands, 85
\bibtem, 266
\cite, 264
\index, 462
in command definitions, 367
in command names, 69
in delimited commands, 379-380
in math environments, 153
spaces (continued)
in tabular environments, 135
in user-defined commands, 313
in \verb commands, 148
in verbatim environments, 146
interword (\५), 11, 66, 70, 102, 190, 520
multiple, act as one, 19, 64, 71
separating words with, $11,64,383$, 427
suppressing, 383, 458
terminating commands with, 19, 69, 154
typed for readability, $22,65,135,367$
unbreakable (\sim tie), 11, 28, 63, 66, 75, 76, 99, 520
absorb spaces, 76
in BibTEX databases, 427
with cross-references, 257
visible (-), 11, 63
and \verb* command, 148
spacing
between characters, 530
between dots with \hdotsfor commands, 233
between math symbols, 187-192
commands, see spacing commands
determined by document classes, 102
horizontal
adjusting, 188
in math, 19, 154-156, 187-192, 233, 236
in text, 11, 102-104, 114, 126, 414, 513, 520
interword, 11, 64-67, 70, 76, 102, 383, 427, 520
preventing removal of, 103
in text, 102-106
intercolumn, 209, 220, 220
in aligned math environments, 224, 228
in tabular environments, 136
interline, 242, 370, 482
adjusting, 95, 98-99, 104, 114
double, 99
rules
and delimited commands, 379-380
for commands, 69, 154
in arguments of \index commands, 462
in math, 19, 154-156, 187-192, 200-201
in text, 11, 19, 64-67, 102-106
in \text commands, 154
vertical
adding to table of contents, 474
adjusting, 56, 139, 481
adjusting with the setspace package, 99
in boxes, 115
in indexes, 267, 449
in math, 200-201
in text, 15, 104-105, 201, 377, 474, 482, 486
preventing removal of, 105
using the setspace package, 99
spacing commands
avoiding direct use of, 481
horizontal, see horizontal spacing
vertical, see vertical spacing
\spadesuit ($\boldsymbol{\$}$ math sym.), 508
\spbreve (${ }^{\text {math accent) })} 177,177,512$
\spcheck (${ }^{\vee}$ math accent), 177, 183, 512
\spdddot (\cdots math accent), 177, 512
\spddot (" math accent), 177, 177, 512
\spdot (• math accent), 177, 512
special
braces, 18, 49, 72, 73, 152, 153, 157
balancing, 72
characters, 15, 63, 76, 77, 77, 78, 515-519
in \index commands, 457
keys, $9,17,63,76$
spelling checkers, 48,495
\sphat (${ }^{\text {math accent), 177, 512 }}$
\sphericalangle (\varangle math sym.), 508
Spivak, Michael D., 522, 545
split (subsid. math align. env.), 208, 211, 230-231, 298
and \allowdisplaybreaks commands, 243
numbering of equations within, 230-231
rules for, 231
splitting
documents into multiple files, 476-479
formulas across lines, 212-214
\sptilde (\sim math accent), 177, 512
\sqcap (\square math op.), 506
\sqcup (\sqcup math op.), 506
\sqrt (\sqrt{x} math com.), 19, 27, 161
optional argument of, 70
\sqsubset (\sqsubset binary rel.), 503
\sqsubseteq (\sqsubseteq binary rel.), 503
\sqsupset (\sqsupset binary rel.), 503
\sqsupseteq (\sqsupseteq binary rel.), 503
\backslash square (\square math sym.), 508
square roots, 27,161
\SS (SS), 81, 515
\ss (B), 81, 515
stacking math symbols, 192-193
Standard Generalized Markup Language (SGML), 523
\star (* math op.), 506
starred commands and environments, see under *-form and specific commands and environments
start of chapters, document class options for, 468
\stepcounter (counter-incr. com.), 402
sterling ($£$ text sym.), 519
\stop (interactive control com.), 535
stretchable
horizontal braces, 178-179
lengths, 102, 378, 406, 407, 530
lines, 179
math arrows, 179, 240-242
math delimiters, 167-168
math symbols, 178-180
vertical spacing, in displayed text environments, 406
STRING (bibl. entry type), 436
structural commands
\appendix, 255, 467
\backmatter, 467
\chapter, 253, 255, 304, 466, 466, 467
\frontmatter, 467
hierarchy of, 252, 466
in presentations, 350
\backslash mainmatter, 467
optional arguments of, 253
\paragraph, 252, 466
\paragraph*, 253
\part, 253, 304, 466
provided by amsart doc. class, 254
provided by article doc. class, 254
provided by book doc. classes, 466-467

\section, 46, 252-255, 467

\section*, 46, 253, 467

\subparagraph, 252, 466

\subsection, 46, 252, 466, 467

\subsection*, 46, 467

\subsubsection, 46, 252, 466
\subsubsection*, 46
syntax of, 253
structures, theorem-like, see proclamations
struts, 114, 139, 200
style (sty) files, see also packages, 250, 366, 386-392
commands in, 386
terminating, 392
style files, $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$, see bst
styles
bibliographical, see also bst, 266
document parameters for, 552
for counters, $87,123,382$, 401,
400-401, 411
of pages, 268-270
of proclamations, 129-131, 524
of tables, 140
text environments, 123
subarray (subsid. math env.), 161, 176
subentries, in indexes, 267, 449, 453, 454, 456
subequations (disp. math env.), 203, 204, 219, 401
subformulas
indentation of, 217
rules for, 215-217, 223-224
shorthand commands for, 364-366, 372-373
\subitem (index com.), 267, 449
\subjclass (top matter com.)
optional arguments of, 279
rules for using, 279
\subjclassname (redef. name), 376
subject classifications, AMS, 279
\subparagraph (struct. com.), 252, 466
subparagraph (counter), 399
subscripts, math, 23, 25, 158-159, 161, 182
as limits, 25, 161, 171-176, 182, 299
as multiline limits, 176
double, 199
font size of, 199
with horizontal braces, 178

\subsection (struct. com.), 46, 252, 350, 466, 467

subsection (counter), 399

\subsection* (struct. com.), 46, 467

\subsectionname (hyperref redef. name), 323

\Subset (© binary rel.), 504
\subset (\subset binary rel.), 503
\subseteq (\subseteq binary rel.), 503
\subseteqq (\subseteq binary rel.), 504
\subsetneq (\subsetneq neg. binary rel.), 505
\subsetneqq $(\varsubsetneqq$ neg. binary rel.), 505
subsidiary math environments
aligned, 211, 227-230, 243
alignedat, 227-230, 243
and \allowdisplaybreaks commands, 243
array, 208, 210, 229, 232, 236-238, 312, 313, 523, 551, 552
Bmatrix, 235
bmatrix, 235
subsidiary math environments (continued)
cases, 33, 208, 210, 239
CD, 240-242
for aligning formulas, 208, 209,
227-231, 243, 298
gathered, 211, 227-230, 243
matrix, 25-26, 208, 210, 231, 232-238
numbering of, 230, 231
page breaks in, 242
pmatrix, 25-26, 235
smallmatrix, 235
split, 208, 211, 230-231, 243, 298
subarray, 161, 176
Vmatrix, 183, 235
vmatrix, 25, 26, 235
\substack (math com.), 161, 176, 176
substitution, of fonts, $94,318,484$
subsubentries, in indexes, 267, 449, 454, 456
\subsubitem (index com.), 267, 449
\subsubsection (struct. com.), 46, 252, 466
subsubsection (counter), 399
\subsubsection* (struct. com.), 46
\subsubsectionname (redef. name), 322
subtraction, 22, 63, 157
\succ (\succ binary rel.), 503
\succapprox (\succsim binary rel.), 504
\succcurlyeq (\succcurlyeq binary rel.), 504
\succeq (\succeq binary rel.), 503
\succnapprox ($\not \approx$ binary rel.), 505
\succneqq (\ddagger binary rel.), 505
\succnsim (\succsim binary rel.), 505
\succsim (\succsim binary rel.), 504
\sum (\sum large math op.), 26, 175, 198, 511
with primes, 194
sumlimits (opt. of amsmath pack.), 299
sums, 26, 27, 174
\sup (sup math op.), 172, 510
superscripts, 23, 25, 158-159, 161, 177, 182
as limits, 25, 161, 171, 174-176, 182
as multiline limits, 176
in math
as limits, 299
font size of, 199
with horizontal braces, 178
in text, 311, 519
support, technical, see technical support
\suppressfloats (float com.), 260
suppressing
creation of auxiliary files, 486, 531
hyperlinks in PDF files, 322
indents (\noindent com.), 99, 484
italic correction, 92
ligatures, 79, 181, 365
line breaks (\nolinebreak com.), 99 loading of the amsmath package, 300 numbering, 211, 215
of equations, $30,31,157,201,211$, $213,215,218,231,270$
of first page of documents, 270
of proclamations, 129, 130, 382
of structural units, 46, 253, 467
Overfull \hbox warnings, 96
page breaks (\nopagebreak com.), 100
placement of floats, 260
q.e.d. symbol, 132
spaces, 383,458
\backslash Supset (Э binary rel.), 504
\supset (つ binary rel.), 503
\supseteq (? binary rel.), 503
\supseteqq (\supseteq binary rel.), 504
\supsetneq (\supseteq binary rel.), 505
\backslash supsetneqq (\supsetneqq binary rel.), 505
\surd ($\sqrt{ }$ math sym.), 508
Sutor, Robert, 558
Swanson, Ellen, 217, 553, 560
\swapnumbers (theorem-style com.), 131
\swarrow ($/$ math arrow), 507
\symbol (symbol com.), 77, 311
symbol alphabets, math, 197
blackboard bold, 197
calligraphic, 197
Euler Fraktur, 197
Greek, 197
symbolic references, showing in margins, 257, 313
symbolic referencing, 28 , see also cross-referencing, 29, 255-258, 531
symbols
as footnote indicators, 87
math, $19,20,63,131,177,182,240$, 249, 294, 311, 501-513
alphabets, 197
and delimiters, 24, 166, 168
bold, 197-199, 301, 312
building new, 183, 192-195, 372
classification of, 188-189, 195
declaring types of, 195
end of proof, 113, 374
in text, 365
large, 227-229
negated, 194-195
shorthand commands for, 364
side-setting, 194-195
sizes of, 199
spacing of, 187-192
stacking, 192-193
stretchable, 178-180
suppressing, 131
text, 76, 77, 80, 278, 516, 518, 519
SymbolTables.pdf (sample file), $4,9,15$, 19
synchronization (inverse search), 5, 494, 498
systems of equations, 225-226
systems, operating, see Mac, PC, or UNIX

T

\t (${ }^{\text {tie text accent), 79, } 516}$
T1 font encoding, 82, 519, 547
tab
character, $63,64,68,102$
Tab key, 9, 11, 63
Tab key, 9, 11, 63
tabbing (display text env.), 141-143, 551, 552
table (counter), 399
table (float env.), 258-259
optional arguments of, 260, 486
placement of, 484, 486
table* (float env.), 259
\tablename (redef. name), 376
and hyperref package, 323
\tableof contents (front-matter com.), 328, 473, 532
tables, 133-140, 141, 237, 259, 260, 313, 523, 551, 552
captions in, 134, 259, 476
fragile commands in, 74
commands for, 135, 137-140, 259, 476
cross-referencing of, 134
designing, 140
double-column, 259
float controls, 134
forcing typesetting of, 101
hyphenation, 528
intersection of lines in, 140, $\mathbf{3 1 3}$
lists of, see under lists
multiline entries in, 138
multipage, 313
numbering of, 258
placement of, 484, 486
style of, 140
typeset inline, 133
tables of contents, 252, 321, 473-475
adding a line to, 473-474
adding vertical spacing to, 474
auxiliary file (toc), 473, 487, 532
commands, 473, 474
depth of, 403
fragile commands in, 74, 475
in frames, 328
in presentations, 358
typesetting, 473-475
tabs, setting, 141
tabular (table env.), 78, 133-140, 237, 259, 312, 313, 523, 551, 552
arguments of, 135
optional, 135
breaking lines in, 135
column-formatting in, 136
horizontal lines in, 135, 137
intercolumn space in, 136
\backslash parbox in, 111
rules for, 135
vertical lines in, 135
width of columns in, 136
tabularx (pack.), 313
\tag, 29, 201, 202, 211, 213, 215, 218, 230, 231
\tag*, 202
tags (names for equations), 29, 201-204, 211, 213, 215, 218, 230, 231
top-or-bottom placement of, 298
$\backslash \tan (\tan$ math op.), 172, 510
\tanh (tanh math op.), 172, 510
Tantau, Till, 325, 359, 552, 560
\tau (τ Greek char.), 502
\tbinom (inline-style binomial com.), 160
tbtags (doc. class opt.), 298
technical reports, in $\mathrm{BIBT}_{\mathrm{E}} \mathrm{X}$ database files, 434-435
technical support
on the Internet, 542
provided by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users groups, 541
provided by the AMS, 542
TECHREPORT (bibl. entry type), 425, 434-435
template.bib (sample bibl. file), 423, 437, 446
templates, 271, 306
bibliographical, 47, 261, 423, 437, 446
customizing
for AMS document classes, 294-297
for articles, 44-45
ggamsart.tpl, 297
myams.tpl, 294-297
personalized
making read-only, 297
terminating
captions, 476
commands, $14,19,69,70,80,147$, 154
environments, 68
fields in BibTEX database entries, 445
files, 392,478
lines, $85,159,367$
paragraphs, 64, 99
sentences, 11, 64-67, 279
TEX, 521, 525
commands, 378,380
to avoid using, 481
commands in $\mathrm{LATEX}_{\mathrm{E}} 482$
distribution, 528
extensibility of, 525
files, portability of, 9
history of, 521-525
implementations, 489
inner workings of, 528
inputs folders, 540, 544-545
layers of, 528-529
omissions in discussion of, 552
Plain, 528
programming in, 525, 553
resources on the Internet, 542
source files, see under source files
structure of, 528
users groups, see $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users groups and TUG
tex (${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ distr. directory), 499
\TeX (TEX com.), 80
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ users groups, see also TUG, 537-542, 547
international, 541
tex4ht (opt. of hyperref pack.), 320
TEX Live (TUG DVD/CD), xxvi, 489, 490, 495, 541
texmf ($\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ distr. directory), 499
TeXShop ($\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ front end for Mac), xxvi, 9, 11, 53, 326, 496
customizing, 496
productivity tools in, 498
with $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}, 442$
with MakeIndex, 461
text, 7
accents, 69, 79, 516

in, 98
blocks, width of, 270
boxes, see text boxes
centering, see centering text, center (text align. env.), and
editors, xxvi, 4, 5, 9, 18, 48, 55, 63, $84,88,365,490,526$
framing, 109
in math mode, 19, 27, 83, 99, 107, 154, 162-163, 181, 196, 226-227, 241, 301
specifying fonts for, 163
in tables
multicolumn, 137-140
multiline, 138
mode, 7
plain, 9
spacing in, 102-106
style commands, see text style commands
symbols, see text symbols
typing, 7-15, 61-115
user-defined commands for, 366
using math symbols in, 365
white space in, 102-106
\text (box com.), xxvi, 27, 33, 83, 99, 107, 162-163, 181, 206, 241, 301
spacing rules in, 154
text boxes, 107-115
alignment of contents in, 107, 111
behave as single characters, 107
commands for
\framebox, 109
\makebox, 107, 108, 109, 111, 113
\backslash mbox, xxvi, 107
\parbox, 107, 109, 110, 111, 138, 405
\raisebox, 115
\rule, 113, 114, 140
\text, xxvi, 27, 33, 83, 99, 107, 154, 162-163, 181, 206, 241, 301
environments for minipage, 107, 109, 112, 383, 384
framed, 109-110
measurements of, 405
measuring, see measurements
single line, 107-109, 163
vertical alignment of, 111, 115
text environments, 117-149
and stretchable vertical space, 406
blank lines in, 118
displayed, see displayed text environments
for abstracts, see abstract
for alignment, 8, 68, 106, 124, 134, 227, 407, 414
for bibliographies, see thebibliography
for boxes, see under text boxes
for comments, see comment
for documents, see document
for figures, see figures
for indexes, see theindex
for letters, see letter
for lists, see list text environments
for proofs, see proof
for styles, see under text style for tables, see tables
rules for, 118
text mode, 62
text style commands
avoiding direct use of, 480
\emph, 8, 14, 68, 90, 91, 337, 516
\textbf, 14, 73, 90, 93, 163, 301, 337, 516
\textit, 90, 91, 337, 516
\textmd, 90, 93, 516
\textnormal, 90, 90, 163, 516
\textrm, 90, 301, 516
\textsc, 90, 91, 516
\textsf, 90, 516
\textsl, 90, 91, 516
\texttt, 14, 76, 90, 516
\textup, 90, 91, 516
text style environments
bfseries, 123
em, 123
itshape, 123
rmfamily, 123
scshape, 123
sffamily, 123
slshape, 123
ttfamily, 123
upshape, 123
text symbols, 77,81
commands, $76,77,80,278,516,518$, 519
typing, 74-80
ˆ (^ circumflex), 81, 518
̃ (~ tilde), 519
∗ (* asterisk), 77, 81, 518
\ (\backslash backslash), 76-77, 81, 518
| (| vertical bar), 77, 81, 518
\textbf (font weight com.), 14, 73, 90, 93, 163, 301, 337, 516
• (• bullet), 81, 518
\textcircled (@), 80, 81, 518
\textcolor (beamer com.), 349
\textcompwordmark (lig.-suppr. com.), 79, 365, 415
— (— em dash), 81, 518
– (-em dash), 81, 518
¡ (i exclamation mark), 62
> ($>$ greater than), 81, 518
\textit (font shape com.), 90, 91, 337, 516
< (< less than), 81, 518
\textmd (font weight com.), 90, 93, 516
\textnormal (font shape com.), 90, 90, 163, 516
\TextOrMath (text and math mode com.), 311
· (• midpoint), 81, 518
¿ (i question mark), 81, 518
\textquotedbl (Eur. quot. mark), 519
“ (" left double quote), 81, 518
” (" right double quote), 81,518
‘ (' left single quote), 519
’ (')
Eur. quot. mark, 519
right single quote, 519
® ($\circledR_{\text {) }}$ registered trademark), 81, 518
\textrm (font shape com.), 90, 301, 516
\textsc (font shape com.), 90, 91, 516
\textsf (font shape com.), 90, 516
\textsl (font shape com.), 90, 91, 516
\textstyle (math font size com.), 199, 204
\textsubscript, 251, 311
\textsuperscript ($\left.{ }^{\text {a }}\right), 311,519$
TM (TM trademark), 519
\texttt (font shape com.), 14, 76, 90, 516
\textup (font shape com.), 90, 91, 516
textures (opt. of hyperref pack.), 320
˽, 11, 63, 64, 519
\textwidth (length com.), 270, 398, 404
$\mathrm{tfm}\left(\mathrm{LA}_{\mathrm{E}} \mathrm{X}\right.$ font metric file), 529
\tfrac $\left(\frac{x}{y}\right)$, 158, 200
\TH (Thorn Eur. char.), 519
\th (thorn Eur. char.), 519
\thanks (top matter com.), 44, 87, 279, 281, 296, 304
\the (value expansion com.), 80, 87, 113, 400
thebibliography (bibliography env.), 40, 47-48, 66, 261-267, 407, 437, 446 argument of, 263, 266 in bbl files, 442
\thechapter (the value of counter chapter), 401
\thefootnote (the value of counter footnote), 87,88
theindex (index env.), 267, 407, 449, 459
commands in, 267, 449
themes (beamer distr. directory), 356
themes, for beamer presentations, 328 , 356-357
Berkeley, 328, 331, 332, 356
color options, 357
Warsaw, 331, 332, 356
theorem (proclamation env.), 37, 52, 54, $125,128,343,384$
body of, 46
logical design of, 52
visual design of, 52
theorem (pack.), 313
theorem-like structures, see proclamations
\theoremname (hyperref redef. name), 323
\theoremstyle* (procl. com.), 37, 129-131
\theoremstyle (procl. com.), 129-131
\theparentequation (the value of counter parentequation), 401
\therefore (\therefore binary rel.), 504
\thesection (the value of counter section), 401
theses, in $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database files, 433-434
\thesubsection (the value of counter subsection), 401
\backslash Theta (Θ Greek char.), 502
\theta (θ Greek char.), 502
\thickapprox (\approx binary rel.), 504
\thicksim (~ binary rel.), 504
\thickspace (spacing com.), 190, 513, 520
\thinspace (spacing com.), 25, 67, 75, 188, 190, 190, 513, 520
third-party packages, see specific packages
\thispagestyle (set page style), 270
thorn (Eur. char), 519
Thorup, Kresten K., 403
tie (\sim spacing com.), 11, 28, 63, 66, 75, 76, 99, 520
absorbs spaces, 76
in BibTEX databases, 427
with cross-references, 28,257
tie (${ }^{-}$text accent), 79, 516
TikZ, 552
tilde (~)
text accent, 79, 516
text symbol, 519
\tilde (\tilde{x} math accent), 25, 177, 512
\time (time com.), 80
time commands
\date, 44
\day, 80
\month, 80
\time, 80
\today, 14, 44, 70-71, 80, 148, 275, 304, 380, 548
\year, 80
Times, in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ documents, 544-545
\times (\times math op.), 23, 158, 506
times (pack.), 544
times.sty (PSNFSS distr. file), 544
\Tiny (font size com.), 93, 93, 517
\tiny (font size com.), 93, 93, 517

\title (top matter com.), 37, 44, 106, 249, 297, 304, 331, 469

optional arguments of, 273, 274, 282, 297
title ($\mathrm{BiBT}_{\mathrm{E}} \mathrm{X}$ database field), 424-426, 433
title pages, 273, 535
commands for, 54
document class options for, 249, 299, 300, 307
environments for, 469
footnotes on, 87
of articles, 37, 249, 251
of books, 467, 469
of presentations, 55
titlepage (doc. class opt.), 249, 299, 307, 468

\titlepage (beamer com.), 328

titlepage (front matter env.), 469
titles
in bibliographies
rules for typing, 426-427
in running heads, 274,297
of articles, 44, 273, 297
of structural commands, 252
fragile commands in, 74
\to (\rightarrow math arrow), 507
toc (table of contents files), 473-475, 487, 532
commands in, 475
tocdepth (counter), 403, 473
\today (time com.), 14, 44, 70-71, 80, $148,275,304,380,548$
tokens, 529
tools (IATEX distr. directory), 311-313 packages in, 312-313
tools (pack.), 312
\top (T math sym.), 508
top matter, 36, 37-38, 249, 251, 272
article information, 37-38, 44-46 of AMS documents, 273-275
commands, $37,44,46,80,87,106$, 270, 273, 273-281, 282, 284, 285, 296, 297, 331, 469
blank lines in, 273
examples of, 282-285
with multiple authors, 281
customizing templates, 44, 294
editing, 44-46
is document-class specific, 251
of AMS documents, 273-285
AMS information, 279-281
author information, 275-279
errors with, 284-285
examples, 282-285
with multiple authors, 281
of books, 251
of presentations, 53-55, 326-327, 331
with multiple authors, 46
top-or-bottom, placement of tags, 298
topmat.tpl (sample file), 282
\topsep (length com.), 407, 408
\totalheight (length com.), 108, 108, 110, 111
trace (pack.), 313
trademark text symbols (${ }^{\mathrm{TM}}{ }^{\circledR}$), 81, 518, 519
trans (beamer doc. class opt.), 358
translation, of line ending characters, 63
\translator (top matter com.), 274
\backslash triangle (\triangle math sym.), 508
\triangledown (∇ math sym.), 508
\triangleleft (\triangleleft math op.), 506
\backslash trianglelefteq (\unlhd binary rel.), 504
\triangleq (\triangleq binary rel.), 504
\triangleright (\triangleright math op.), 506
\trianglerighteq (\unrhd binary rel.), 504
trivlist (list text env.), 414
\tt (obs. $\mathrm{AAT}_{\mathrm{E}} \mathrm{X} 2.09$ font com.), 94
\ttfamily (font shape com. dec.), 90 , 123, 142, 516
ttfamily (font shape env.), 123
tug ($\mathrm{TE}_{\mathrm{E}} \mathrm{X}$ Users Group), 489, 490, 495, 537, 541-542
TUGboat, 541, 553
two-letter font commands, see under font commands
twocolumn (doc. class opt.), 85, 101, 259, 299, 307, 308
and footnotes, 313
\twocolumn (double-column com.), 101
\twoheadleftarrow (\leftarrow math arrow), 507
\backslash twoheadrightarrow (\rightarrow math arrow), 507
twoside (doc. class opt.), 85, 249, 299, 307, 308, 468
type (BibTEX database field), 425
type foundries, 544, 546
types
of commands, 73-74
of math symbols, 188, 198 declaring, 195
typeset
example articles
intrart.tex, 41-43
sampart.tex, 285-288
files, 5, 5, 271, 443
DVI format, 318,530
PDF format, $5,259,318,326,530$
typesetting
indexes, 459-461
source files, 4, $9,12,20,28,63,74$, 534
tables of contents, 473-475
with $\mathrm{LA}_{\mathrm{E}} \mathrm{X}, 522,526,527,529-534$
typewriter style
document font family, $\mathbf{8 9}$
font shape, $14,76,78,90, \mathbf{1 2 3}, 142$, $365,516,544$
fonts, 88
in math, 196, 196, 512
typing
bibliographic entries, 426-437
accents in, 427
names in, 426
rules for, 443-446
titles in, 426-427
books, 465-487
exercises, 476
footnotes, $87-88$
math, 17-33, 151-206
poetry, 144-145
programs, 141-143, 145-147
quotations, 143-144
text, $7-15,61-115$
symbols, $74-80$
typographical
errors, 48
rules for abbreviations and acronyms, 91 initials, 67

U

\u breve text accent (${ }^{\wedge}$), 79, 516
UK tug (United Kingdom TEX Users Group), 541
Frequently Asked Questions (FAQ), 542
\ulcorner (\ulcorner math delimiter), 167, 509
Umeki, Hideo, 270
umlaut (${ }^{*}$ text accent), 9, 15, 79, 516, 548
unbreakable
hyphens, 83
spaces (~ tie), 11, 28, 63, 66, 75, 76, 99, 520
absorb spaces, 76
in BibTEX databases, 4274
with cross-references, 257
\underbrace (math sym.), 178
with a subscript, 178
underdot text accent (.), 79, 516
\underleftarrow (x math arrow), 179
\underleftrightarrow (x math arrow) 179
\underline (\underline{x} math line sym.), 179
\underrightarrow (x math arrow), 179
underscore (-), 77
text symbol, 81, 518
in e-mail addresses, 278
underscore text accent (_), 79, 516
\underset (symbol-building com.), 183, 192

Unicode, 554
units
absolute, see under absolute
dimensional, see under dimensional units
logical, see under logical
math, see mu
relative, see under relative
UNIX, s,538LATEXimplementations,$3,442,461$,489lineendingcharacters,9\unlhd(\unlhdmathop.),506unmarkedfootnotes,44,279unnumberedenvironments,215equations,$30,31,157,201,202,210$,$211,213,215,218,231,328$items,119mathenvironments,211proclamations,129,130,382structuralunits,$46,253,467$unpacked($\mathrm{LAT}_{\mathrm{E}}\mathrm{X}$distr.directory),311,540UNPUBLISHED(bibl.entrytype),435\unrhd(\unrhdmathop.),506\Uparrow(介)matharrow,507mathdelimiter,167,509\uparrow(\uparrow)matharrow,507mathdelimiter,167,509updatestoAMSFontsandpackages,533to$\mathrm{LAT}_{\mathrm{E}}\mathrm{X},532$\Updownarrow($\mathbb{\downarrow}$)matharrow,507mathdelimiter,167,509\updownarrow(\uparrow)matharrow,507mathdelimiter,167,509\upharpoonleft(1matharrow),507\upharpoonright(1matharrow),507\uplus(\uplusmathop.),506\upn(fontshapecom.),156uppercasecounterstylesletters(\alph),401romannumerals(\roman),401upref(pack.),300,301upright(fontshape)$28,88,89,90,\mathbf{91}$,123,156,382,412,516contextdependenceof,91\uproot(root-adjustmentcom.),162\upshape(fontshapecom.dec.),90,91,$123,382,412,516$upshape(fontshapeenv.),123\Upsilon(ΥGreekchar.),502\upsilon(vGreekchar.),502\upuparrows($\uparrow\uparrow$matharrow),507\urcorner(7mathdelimiter),167,509\URL(bibl.com.),425URL(UniformResourceLocator),278,seealsohyperlinks\urladdr(topmattercom.),278,279,296,323\usecolortheme(beamercom.),357\usecounter(listcountercom.),411\usefonttheme(beamercom.),357\usepackage(preamblecom.),35,53,70,$249,294,320,326,366,386,450$,534canloadmultiplepackages,250user-definedcommands,$36,\mathbf{364}-\mathbf{380},480$argumentsof,370-374asshorthand,$364-374$astokens,529commanddeclarationsin,90scopeof,$\mathbf{367-368},382$defining,$87,99,132,139,266,267$,$364,366,373-375,400$inpreamble,250delimited,378-380forenvironments,365forindexing,371,454forsubformulas,371-373fortext,366invoking,366multipleargumentsof,70optionalargumentsof,374rules,366,367shortarguments,373-374with\def,378user-definedenvironments,380-385,479,482,529defining,381forcustomlists,406-415optionalargumentsof,384shortarguments,385usersgroups,537,539,541-542,547international,541\usetheme(beamercom.),328,356unix,479V\vcarontextaccent(${}^{\sim}$),79,516\value(valueofcounter),402values,ofcounters,87,402printing,80,113,400vanOostrum,Piet,270,537\varDelta(ΔGreekchar.),502\varepsilon(εGreekchar.),502\varGamma(ΓGreekchar.),502\varinjlim(limmathop.),172,510varioref(pack.),258,313\varkappa(\varkappaGreekchar.),502\varLambda(ΛGreekchar.),502\varliminf(limmathop.),172,510\varlimsup($\overline{\mathrm{lim}}$mathop.),172\varnothing(\varnothingmathsym.),508\varOmega(ΩGreekchar.),502\varPhi(ΦGreekchar.),502\varphi(φGreekchar.),502\varPi(ΠGreekchar.),502\varpi(ϖGreekchar.),502\varprojlim(limmathop.),172,510\varpropto(\proptobinaryrel.),504\varPsi(ΨGreekchar.),502\varrho(ϱGreekchar.),502\varSigma(ΣGreekchar.),502\varsigma(ऽGreekchar.),502\varsubsetneq(\ddaggerneg.binaryrel.),505\varsubsetneqq(\ddaggerneg.binaryrel.),505\varsupsetneq($£$binaryrel.),505\varsupsetneqq(\equivbinaryrel.),505\varTheta(ΘGreekchar.),502\vartheta(ϑGreekchar.),502\vartriangle(Δmathop.),506\vartriangleleft(\triangleleftmathop.),506\vartriangleright(\trianglerightmathop.),506\varUpsilon(ΥGreekchar.),502$\backslash\operatorname{varXi}(\Xi$Greekchar.),502\Vdash(I-binaryrel.),504\vDash(\vDashbinaryrel.),504\vdash(\vdashbinaryrel.),503\vdots(verticalellipsis),161,235\vec(\vec{x}mathaccent),25,177,377,512\vee(Vmathop.),506\veebar(ㄴmathop.),506\verb(inlineverbatimcom.),147-149inalignedmathenvironments,148inargumentofothercommands,148spacesin,148\verb*(inlineverbatimcom.),148delimiterswith,147-149verbatim(disp.textenv.),145-147,313,359,523blanklinesin,146charactersfollowing,146simulatingwith\verb,148verbatim(pack.),86,87,147,313,387verse(disp.textenv.),144,407breakinglinesin,145versionsofAMSpackagesandAMSFonts,300,301,524,525,533of$\mathrm{LAT}_{\mathrm{E}}\mathrm{X}$packages,$532-534$\Vert(\|mathdelimiter),167,509\vert(|mathdelimiter),167,509verticalalignment,ofboxes,111,115bar(|textsymbol),81,518ellipses,161,235glue,530linesinCDenvironments,241intabularenvironments,135matharrows,241verticalspacingaddingafter$\backslash\backslash,15$addingtotableofcontents,474adjusting,56with\arraystretch,139withstruts,139adjustingwiththesetspacepackage,99betweenmarginalnotes,404betweenparagraphs,404commands\bigskip,104\enlargethispage,101,484,487\medskip,104\smallskip,104\smash,115,201,201toavoidusing,481verticalspacingcommands(continued)\vfill(fillcom.),106\vphantom,105\vspace,104\vspace*,105inboxes,115inindexes,267,449inmathmode,200-201intext,15,104-105,377,474,482,486preventingremovalof,105stretchable,406usingthesetspacepackage,99\vfill(spacefillcom.),106viewersDVI,526,530,539PDF,seeunderPDFviewingtypesetfiles,494,530DVIformat,318,530PDFformat,5,259,318,530virtex($\mathrm{T}_{\mathrm{E}}\mathrm{X}$program),528visiblespaces(-),11,63and\verb*command,148VisualGuide,tomultilinemathformulas,207visualdesign,52-53,247,268-270,358markup,535guide,tomultilinemathformulas,208Vmatrix(subsid.mathenv.),183,235vmatrix(subsid.mathenv.),25,26,235volume(BibTEXdatabasefield),424,425von,inbibliographicentries,426\vphantom(spacingcom.),105\vspace(spacingcom.),104\vspace*(spacingcom.),105vtex(opt.ofhyperrefpack.),320\Vvdash(IIトbinaryrel.),504undefined

W

warning messages, see also error messages
about hyphenation, 96
Abstract should precede \maketitle in AMS document classes, 251
Characters dropped after \end\{verbatim\}, } 1 4 6
\end occurred inside a group at level $x, 72$
\end occurred when $\backslash x x x$ on line yy was incomplete, 478
generated by overlapping braces, 72
Label(s) may have changed, 256
line numbers in, 12
lines are too wide, 12-13, 96-97
No auxiliary output files, 531
Overfull \hbox, 12-13, 96-97, 530 suppressing, 96
recorded in log file, 96, 526
regarding font substitution, 94
Rerun to get cross-references right, 256
Underfull \vbox has occurred while \output is active, 530
Warning--missing field in label, 444-446
when using \NeedsTeXFormat, 250, 386, 532
with BibTEX, 443-446
in $\log (\mathrm{blg})$ files, 442
Warsaw (beamer theme), 331, 332, 356
Web, see Internet
\wedge (\wedge math op.), 506
weight, of fonts, see under font environments, font commands and font declarations
white space
adjusting, 482
and binary operations and relations, 155
between marginal notes, 404
between paragraphs, 404
commands, avoiding direct use of, 481
detemined by document classes, 102
horizontal, 68, 102, 105, 142, 154, 189-191, 224, 225, 313, 368-369, 513, 520
in math mode, 186, 233, 236
in text mode, 11, 19, 64-67, 102-104, 106, 114, 126, 414
in arguments of commands, 85
in command definitions, 367
in command names, 68
in delimited commands, 379-380
in math, 19, 51, 104-105, 154-156, 187-192, 200-201
adjusting, 104
in source files, 154
in tabular environments, 135
in text, 11, 102-106, 383, 427, 513, 520
in \verb commands, 148
in verbatim environments, 146
suppressing, 383, 458
terminating commands with, 69
vertical, 102
adding to table of contents, 474 adjusting, 481
in math mode, 104-105, 200-201
in text mode, 15, 101, 104-106, 201, 377, 482, 486
\widehat (\widehat{x} math accent), 177, 177, 184, 512
\widetilde (\widetilde{x} math accent), 177, 177, 512
width
of columns in tabular environments, 136
of fonts, see font width of text blocks, 270, 398, 404
of text boxes, 107-109, 405
\width (length com.), 108, 108, 111
Windows, see also PCs, see under Microsoft
WinEdt ($\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ front end for PC), xxvi, 9, 11, 53, 490, 491, 492
installation, 490-491 productivity tools in, 494 with BibTEX, 442 with MakeIndex, 461
word processors, 11
words, are separated by spaces, 82
work (folder), 4, 10, 12, 14, 18, 20, 35, 39, $53,164,294,320,326-328,331$, 343, 438, 491
creating, 4
World Wide Web, see Internet
\wp (\wp math sym.), 508
\wr (2 math op.), 506
wrapping, of lines by e-mail clients, 65
wrapping, of lines by text editors, 84

X

xcb (exercise env.), 476
xcolor (pack.), 325, 348 options, 349
$\backslash \mathrm{Xi}$ (Ξ Greek char.), 502
\xi (ξ Greek char.), 502
\xleftarrow (stretchable math arrow), 179
xr (pack.), 258, 313
\xrightarrow (stretchable math arrow), 179
xspace (pack.), 313, 368-369
xy-pic (pack.), 242

Y

Y\&Y, 525, 543
\year (time com.), 80
year (BibTEX database field), 424, 425

X

zero, specifying in arguments, 114
\zeta (ζ Greek char.), 502

(backslash), 167, 518
key, 9, 76
starts commands, $8,14,68$
text symbol, 76-77, 81, 509
 - (space), 11, 63, 64
and \verb* command, 148
in arguments of commands, 85
in \bibitem labels, 266
in \cite commands, 264
in command names, 68
in tabular environments, 135
text symbol, 519
\- (space com.), 11, 66, 70, 102, 190, 520
! (exclamation mark), 9,62
float control, 260, 486
in \index commands, 453, 454, 457
i (exclamation mark, Spanish), 81, 515, 518
\! (negthinspace), 182, 190, 190, 513, 520
\" (" dieresis/umlaut text accent), 9, 15, $79,516,548$
" (double quote), 9, 75
in BibTEX database fields, 424, 445, 446
in \index commands, 457
key, 9, 63, 75
"ck (European character), 548
"s (eszett), 548
\#
in user-defined commands, 371,378
key, 9, 63

\# (\# octothorp), 77, 81, 518
\$
as inline math delimiter, $17,18,33$, 72, 74, 152
act as braces, 152
must be balanced, 153
in error messages, $20,51,147,153$, 154, 157, 233
key, 9, 63

\$ (\$ dollar sign), 9, 77, 81, 518
\$\$
in error messages, 51
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ displayed math delimiter, 152
\%
as comment character, $6,10,19,21$, 61, 85-86, 141, 294, 458
in $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ databases, 86, 443
key, 9, 63

% (\% percent), 9, 61, 77, 81, 86, 518
in e-mail addresses, 278
\&
as alignment point, $30,31,216,218$, 220, 221
as column separator, $25,135,220$, 221, 231, 236
key, 9, 63

\& (\& ampersand), 77, 81, 518
\&\&, alignment point for annotations, 32
' (right single quote), 9, 11, 62, 75, 519 for primes ('), 23, 159, 194
\' (' acute text accent), 79, 516

((start inline math mode), 18, 74
acts as special brace, 152,153
must be balanced, 153
(
as math delimiter ((), 167, 509
in index entries, 455
key, 8,62

) (end inline math mode), 18, 74
acts as special brace, 152, 153
must be balanced, 153
)
as math delimiter ()), 167, 509
in index entries, 455
key, 8,62
 * (* asterisk), 77
interactive prompt, 113, 376-378, $5 \mathbf{5 4}$
key, 8, 63
** prompt, 534
*-form
of commands, 46, 69, 98, 101, 103,
$105,129,130,148,173,195,196$,
$242,253,322,373,382,385,439$, 467, 473
of environments, 157, 201, 211, 213, $215,231,259$
 + key, 8, 63
 + (plus) $22,63,157,188,191,192,213$, 216-218
as binary operation, 506
 + and - rule, 188, 191, 192, 217, 218
and subformulas, 216
in multline environments, 213

, (thinspace), 25, 67, 75, 188, 190, 190, 513, 520
, (comma), 9, 62
and italic correction, 92 in \bibitem commands, 266
in $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ databases, 424, 425, 445
use in formulas, 155
 - (dash, hyphen, minus), 9, 22, 63, 75, 76, $157,188,191,192,196,216,217$
as binary operation, 506
in \hyphenation commands, 82
\- (opt. hyphen), 13, 82, 82, 96
-- (- number ranges, en dash), 14, 75, 81, 518
in $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ databases, 427
--- (— em dash), 14, 75, 81, 518
. (period), 9,62 and italic correction, 92
in BibTEX databases, $^{2} 26$
\. overdot text accent ('), 79, 516
\/(italic correction), 91-93, 520
and font commands, 92
/ (slash)
as divisor, 22, 63, 157
as math delimiter (/), 167, 509
key, 8
\: (medspace spacing com.), 190, 513, 520
: (colon), 9, 62
as binary relation, $63,191,503$
\; (thickspace), 190, 513, 520
; (semicolon), 9, 62
< (less than)
as binary relation $(<), 503$
key, 17, 63
text symbol, 81, 518
$\backslash=$
macron text accent (-), 79, 516
tab set command, 141
$=($ equal sign)
as binary relation $(=), 503$
in $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ database fields, 424
key, 8,63
\> (tabbing com.), 141, 142
$>$ (greater than)
as binary relation ($>$), 503
key, 17, 63
text symbol, 81, 518
?
prompt, 20, 48, 491, 534
question mark, 9,62
¿ (Spanish question mark), 81, 515, 518
@ (@ at sign), 9, 63, 77
in $\mathrm{BiB}_{\mathrm{E}} \mathrm{X}$ database (bib) files, 424
in \index commands, 455,456
@-expression, 136
@. (blank math symbol for comm.
diagrams), 240, 241
\@. (intersentence space), 67, 520
@<<< (stretchable left arrow math sym.), 240
$@=($ stretchable equals sign math sym.), 240
@>>> (stretchable right arrow math sym.), 240
@AAA (stretchable up arrow math sym.), 241
@VVV (stretchable down arrow math sym.), 241
@\vert (stretchable double vertical line), 241
\ [(start displayed math mode), 18, 152, 155
acts as special brace, 152, 157
[
and optional arguments, 15, 27, 69, 70, 128, 132, 135
key, 8,62
math delimiter ([), 167, 509
with - commands, 122
with \newcommand, 370
\(\]\) (end displayed math mode), 18, 152, 155

acts as special brace, 152,157
]
and optional arguments, 15, 27, 69, 70, 128, 132, 135
key, 8,62
math delimiter (]), 167, 509
with - commands, 122
with \newcommand, 370
\{
for required arguments, \(8,14,19, \mathbf{6 9}\), 70, 159, 366, 530
for scoping, 71-73
in \(\mathrm{BibT}_{\mathrm{E}} \mathrm{X}\) entries, 424, 427
key, 9, 63
must be balanced, 21, 72, 77
in \index commands, 462
with \def, 378
\\{ }
as math delimiter (\{), 167, 509
text brace (\(\{\)), 77, 81, 518
\}
for required arguments, \(8,14,19,69\), 70, 159, 366, 530
for scoping, 71-73
in \(\mathrm{BiBT}_{\mathrm{E}} \mathrm{X}\) entries, 424, 427
key, 9, 63
must be balanced, 21, 72, 77
in \index commands, 462
with \def, 378
\\\(}\)
as math delimiter (\}), 167, 509
text brace (\}), 77, 81, 518

 - (caret)
for superscripts, 23, 25, 158-159, 161, 182
key, 9, 63, 77
\^ circumflex text accent (${ }^{\wedge}$), 79, 81, 516, 518
_ (- underscore), 9, 77, 81, 518
in e-mail addresses, 278
 - (underscore)
for subscripts, 23, 25, 158-159, 161, 178, 182
key, 9, 63
' (left single quote), $9,11,62, \mathbf{7 5}, 519$
\' (` grave text accent), 62, 79, 516
\| (|| math delimiter), 166, 167, 168, 185, 509
I (| vertical line), 9, 17, 63, 77, 168, 189
as binary relation, 188, 189
as math delimiter, 167, 170, 189, 191, 509
in \index commands, 454, 457
in tabular environments, 135
~ (tilde)
key, 9, 11, 63
tie/unbreakable space, 11, 28, 63, 66, $75,76,99,520$
absorbs spaces, 76
in $\mathrm{BibT}_{\mathrm{E}} \mathrm{X}$ databases, 427
with cross-references, 28,257

~ (~ tilde text accent), 77, 79, 516, 519
9pt (doc. class option), 297
10pt (doc. class option), 104, 297, 306
11pt (doc. class option), 297, 306
12pt (doc. class option), 93, 297, 306

 (new line), 15, 97, 98
and \backslash kill commands, 142
breaking lines with, 25, 30, 31, 33, 44, 46, 98, 124, 135, 141, 142, $145,176,211,213,215,216,227$, 231, 242, 273-278, 297, 304, 309, 358
in arguments of commands, 98
in environments, $98,124,145$
in text, 98
optional argument of, 15, 98, 98, 242

* (new line), 98, 242

[^0]: ${ }^{1}$ In the old days, I used to run TEXTURES under OS 9. Unfortunately, TEXTURES does not run on new Intel Macs.

[^1]: ${ }^{1}$ I know you have never heard of the sample document class. It is a special class created for these exercises. You can find it in the samples folder (see page 4). If you have not yet copied it over to the work folder, do so now.
 ${ }^{2}$ The location of special keys on the keyboard depends on the country where the computer was sold. It also depends on whether the computer is a PC or a Mac. In addition, notebooks tend to have fewer keys than desktop computers. Fun assignment: Find the tilde (${ }^{\sim}$) on a Spanish and on a Hungarian keyboard.

[^2]: \begin\{abstract

[^3]: ${ }^{1}$ Footnotes are easy to place.

[^4]: ${ }^{1} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ uses $\$ \$$ to open and close a displayed math environment. In $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$, this may occasionally cause problems. Don't do it! Try the fleqn document class option of amsart (see Section 11.5) as an example of what can go wrong.

[^5]: *Research supported by the NSF under grant number 23466.

[^6]: ${ }^{1}$ If you have Adobe Acrobat Pro, open File>Document Properties and check mark Full Screen Mode. Then the PDF document automatically opens in full screen mode.

[^7]: ${ }^{1}$ We follow the instructions for MiKTeX 2.5. Hopefully, this will also assist you with later versions.

[^8]: ${ }^{2}$ The user, recorded on Figure A.2, typed s for "scroll mode". LATEX then completes the typesetting without stopping for errors (see Section D.4).

[^9]: ${ }^{3}$ We follow the instructions for MacTeX-2007. Hopefully, this will also assist you with later versions.

[^10]: ${ }^{1}$ A talented group of mathematicians and programmers, Frank Mittelbach, Chris Rowley, and Rainer Schöpf. The group has since expanded with the addition of Johannes Braams, David Carlisle, Michael Downes, Denys Duchier, Robin Fairbairns, Alan Jeffrey, and Martin Schröder; many volunteers have also contributed to the project. The current $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 3$ project team personnel are: Johannes Braams, David Carlisle, Robin Fairbairns, Frank Mittelbach, Chris Rowley, Rainer Schöpf, Thomas Lotze, Morten Høgholm, and Javier Bezos.

[^11]: ${ }^{2}$ Delimited commands work somewhat differently (see Section 15.1.8).

